Provably Neural Active Learning Succeeds via Prioritizing Perplexing Samples
- URL: http://arxiv.org/abs/2406.03944v1
- Date: Thu, 6 Jun 2024 10:38:01 GMT
- Title: Provably Neural Active Learning Succeeds via Prioritizing Perplexing Samples
- Authors: Dake Bu, Wei Huang, Taiji Suzuki, Ji Cheng, Qingfu Zhang, Zhiqiang Xu, Hau-San Wong,
- Abstract summary: Neural Network-based active learning (NAL) is a cost-effective data selection technique that utilizes neural networks to select and train on a small subset of samples.
We try to move one step forward by offering a unified explanation for the success of both query criteria-based NAL from a feature learning view.
- Score: 53.95282502030541
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Neural Network-based active learning (NAL) is a cost-effective data selection technique that utilizes neural networks to select and train on a small subset of samples. While existing work successfully develops various effective or theory-justified NAL algorithms, the understanding of the two commonly used query criteria of NAL: uncertainty-based and diversity-based, remains in its infancy. In this work, we try to move one step forward by offering a unified explanation for the success of both query criteria-based NAL from a feature learning view. Specifically, we consider a feature-noise data model comprising easy-to-learn or hard-to-learn features disrupted by noise, and conduct analysis over 2-layer NN-based NALs in the pool-based scenario. We provably show that both uncertainty-based and diversity-based NAL are inherently amenable to one and the same principle, i.e., striving to prioritize samples that contain yet-to-be-learned features. We further prove that this shared principle is the key to their success-achieve small test error within a small labeled set. Contrastingly, the strategy-free passive learning exhibits a large test error due to the inadequate learning of yet-to-be-learned features, necessitating resort to a significantly larger label complexity for a sufficient test error reduction. Experimental results validate our findings.
Related papers
- Provable Advantage of Curriculum Learning on Parity Targets with Mixed
Inputs [21.528321119061694]
We show a separation result in the number of training steps with standard (bounded) learning rates on a common sample distribution.
We also provide experimental results supporting the qualitative separation beyond the specific regime of the theoretical results.
arXiv Detail & Related papers (2023-06-29T13:14:42Z) - Active Learning Principles for In-Context Learning with Large Language
Models [65.09970281795769]
This paper investigates how Active Learning algorithms can serve as effective demonstration selection methods for in-context learning.
We show that in-context example selection through AL prioritizes high-quality examples that exhibit low uncertainty and bear similarity to the test examples.
arXiv Detail & Related papers (2023-05-23T17:16:04Z) - Using Sum-Product Networks to Assess Uncertainty in Deep Active Learning [3.7507283158673212]
This paper proposes a new and very simple approach to computing uncertainty in deep active learning with a Convolutional Neural Network (CNN)
The main idea is to use the feature representation extracted by the CNN as data for training a Sum-Product Network (SPN)
arXiv Detail & Related papers (2022-06-20T14:28:19Z) - Generalization of Neural Combinatorial Solvers Through the Lens of
Adversarial Robustness [68.97830259849086]
Most datasets only capture a simpler subproblem and likely suffer from spurious features.
We study adversarial robustness - a local generalization property - to reveal hard, model-specific instances and spurious features.
Unlike in other applications, where perturbation models are designed around subjective notions of imperceptibility, our perturbation models are efficient and sound.
Surprisingly, with such perturbations, a sufficiently expressive neural solver does not suffer from the limitations of the accuracy-robustness trade-off common in supervised learning.
arXiv Detail & Related papers (2021-10-21T07:28:11Z) - Gone Fishing: Neural Active Learning with Fisher Embeddings [55.08537975896764]
There is an increasing need for active learning algorithms that are compatible with deep neural networks.
This article introduces BAIT, a practical representation of tractable, and high-performing active learning algorithm for neural networks.
arXiv Detail & Related papers (2021-06-17T17:26:31Z) - Efficacy of Bayesian Neural Networks in Active Learning [11.609770399591516]
We show that Bayesian neural networks are more efficient than ensemble based techniques in capturing uncertainty.
Our findings also reveal some key drawbacks of the ensemble techniques, which was recently shown to be more effective than Monte Carlo dropouts.
arXiv Detail & Related papers (2021-04-02T06:02:11Z) - Discriminatively-Tuned Generative Classifiers for Robust Natural
Language Inference [59.62779187457773]
We propose a generative classifier for natural language inference (NLI)
We compare it to five baselines, including discriminative models and large-scale pretrained language representation models like BERT.
Experiments show that GenNLI outperforms both discriminative and pretrained baselines across several challenging NLI experimental settings.
arXiv Detail & Related papers (2020-10-08T04:44:00Z) - On the Robustness of Active Learning [0.7340017786387767]
Active Learning is concerned with how to identify the most useful samples for a Machine Learning algorithm to be trained with.
We find that it is often applied with not enough care and domain knowledge.
We propose the new "Sum of Squared Logits" method based on the Simpson diversity index and investigate the effect of using the confusion matrix for balancing in sample selection.
arXiv Detail & Related papers (2020-06-18T09:07:23Z) - Learning What Makes a Difference from Counterfactual Examples and
Gradient Supervision [57.14468881854616]
We propose an auxiliary training objective that improves the generalization capabilities of neural networks.
We use pairs of minimally-different examples with different labels, a.k.a counterfactual or contrasting examples, which provide a signal indicative of the underlying causal structure of the task.
Models trained with this technique demonstrate improved performance on out-of-distribution test sets.
arXiv Detail & Related papers (2020-04-20T02:47:49Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.