論文の概要: Detection of Criminal Texts for the Polish State Border Guard
- arxiv url: http://arxiv.org/abs/2108.10580v1
- Date: Tue, 24 Aug 2021 08:41:24 GMT
- ステータス: 処理完了
- システム内更新日: 2021-08-25 18:40:14.452131
- Title: Detection of Criminal Texts for the Polish State Border Guard
- Title(参考訳): ポーランド国境警備隊における刑事文書の検出
- Authors: Artur Nowakowski, Krzysztof Jassem
- Abstract要約: 本稿では,インターネット上に出現するポーランドの犯罪テキストの検出について述べる。
検出タスクでは,注釈付きインターネットスニペットの大規模なコーパスをトレーニングデータとして収集した。
このデータセットを共有し、Goitoプラットフォームをベンチマークとして、犯罪テキストを検出するための新しいタスクを作成します。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This paper describes research on the detection of Polish criminal texts
appearing on the Internet. We carried out experiments to find the best
available setup for the efficient classification of unbalanced and noisy data.
The best performance was achieved when our model was fine-tuned on a
pre-trained Polish-based transformer language model. For the detection task, a
large corpus of annotated Internet snippets was collected as training data. We
share this dataset and create a new task for the detection of criminal texts
using the Gonito platform as the benchmark.
- Abstract(参考訳): 本稿では,インターネット上に現れるポーランドの犯罪テキストの検出について述べる。
非平衡・雑音データの効率的な分類のための最善の設定を探索する実験を行った。
ポーランド語をベースとしたトランスフォーマー言語モデルを用いて,我々のモデルを微調整した結果,最高の性能が得られた。
検出タスクでは,注釈付きインターネットスニペットの大規模なコーパスをトレーニングデータとして収集した。
このデータセットを共有し、Goitoプラットフォームをベンチマークとして、犯罪テキストを検出するための新しいタスクを作成します。
関連論文リスト
- PIRB: A Comprehensive Benchmark of Polish Dense and Hybrid Text
Retrieval Methods [0.552480439325792]
ポーランド語情報検索ベンチマーク(PIRB, Polish Information Retrieval Benchmark)は、ポーランド語のための41のテキスト情報検索タスクを含む総合的な評価フレームワークである。
このベンチマークには、既存のデータセットに加えて、医学、法律、ビジネス、物理学、言語学など、さまざまなトピックをカバーする、10の新しい未発表データセットが含まれている。
我々は,20以上の密度・疎度検索モデルの評価を行い,そのベースラインモデルについて検討した。
論文 参考訳(メタデータ) (2024-02-20T19:53:36Z) - Text generation for dataset augmentation in security classification
tasks [55.70844429868403]
本研究では、複数のセキュリティ関連テキスト分類タスクにおいて、このデータギャップを埋めるための自然言語テキストジェネレータの適用性を評価する。
我々は,GPT-3データ拡張戦略において,既知の正のクラスサンプルに厳しい制約がある状況において,大きなメリットを見出した。
論文 参考訳(メタデータ) (2023-10-22T22:25:14Z) - Deepfake audio as a data augmentation technique for training automatic
speech to text transcription models [55.2480439325792]
本稿では,ディープフェイク音声に基づくデータ拡張手法を提案する。
インド人(英語)が生成したデータセットが選択され、単一のアクセントの存在が保証された。
論文 参考訳(メタデータ) (2023-09-22T11:33:03Z) - Towards a Robust Detection of Language Model Generated Text: Is ChatGPT
that Easy to Detect? [0.0]
本稿では,フランス語テキストのためのChatGPT検出器の開発と評価手法を提案する。
提案手法では、英文データセットをフランス語に翻訳し、翻訳されたデータに基づいて分類器を訓練する。
その結果, 検出器はChatGPT生成テキストを効果的に検出でき, ドメイン内設定における基本的な攻撃手法に対する堅牢性も高いことがわかった。
論文 参考訳(メタデータ) (2023-06-09T13:03:53Z) - uChecker: Masked Pretrained Language Models as Unsupervised Chinese
Spelling Checkers [23.343006562849126]
そこで我々はtextbfuChecker というフレームワークを提案し,教師なしのスペル検出と修正を行う。
BERTのようなマスキーク事前訓練言語モデルをバックボーンモデルとして導入する。
各種フレキシブルなMASKの操作に特化して,マスク付き言語モデルを微調整するためのコンフュージョンセット誘導マスキング戦略を提案する。
論文 参考訳(メタデータ) (2022-09-15T05:57:12Z) - Evaluation of Transfer Learning for Polish with a Text-to-Text Model [54.81823151748415]
ポーランド語におけるテキスト・テキスト・モデルの質を評価するための新しいベンチマークを導入する。
KLEJベンチマークはテキスト・トゥ・テキスト、en-pl翻訳、要約、質問応答に適応している。
本稿では,ポーランド語のための汎用テキスト・テキスト・ツー・テキスト・モデルであるplT5について述べる。
論文 参考訳(メタデータ) (2022-05-18T09:17:14Z) - Methods for Detoxification of Texts for the Russian Language [55.337471467610094]
我々は、攻撃的言語と戦うために、ロシア語のテキストを自動で解毒する研究を初めて紹介する。
我々は、局所的な修正を行う教師なしアプローチと、事前訓練された言語GPT-2モデルに基づく教師なしアプローチの2種類のモデルをテストする。
以上の結果から, 改良の余地はあるものの, 脱毒に有効であることが明らかとなった。
論文 参考訳(メタデータ) (2021-05-19T10:37:44Z) - Evaluating Document Coherence Modelling [37.287725949616934]
英語文侵入検出タスクにおけるプリトレーニング済みLMの広い範囲の性能を検討する。
実験の結果,事前学習したLMはドメイン内評価において顕著に機能するが,クロスドメイン設定の大幅な低下を経験することがわかった。
論文 参考訳(メタデータ) (2021-03-18T10:05:06Z) - Comparison of Interactive Knowledge Base Spelling Correction Models for
Low-Resource Languages [81.90356787324481]
低リソース言語に対する正規化の推進は、パターンの予測が難しいため、難しい作業である。
この研究は、ターゲット言語データに様々な量を持つニューラルモデルとキャラクタ言語モデルの比較を示す。
我々の利用シナリオは、ほぼゼロのトレーニング例によるインタラクティブな修正であり、より多くのデータが収集されるにつれてモデルを改善する。
論文 参考訳(メタデータ) (2020-10-20T17:31:07Z) - Improving Text Generation with Student-Forcing Optimal Transport [122.11881937642401]
トレーニングモードとテストモードで生成されたシーケンスに最適なトランスポート(OT)を提案する。
テキストシーケンスの構造的および文脈的情報に基づいて、OT学習を改善するための拡張も提案されている。
提案手法の有効性は,機械翻訳,テキスト要約,テキスト生成タスクにおいて検証される。
論文 参考訳(メタデータ) (2020-10-12T19:42:25Z) - Machine Translation Pre-training for Data-to-Text Generation -- A Case
Study in Czech [5.609443065827995]
非英語言語におけるデータ・テキスト生成における機械翻訳に基づく事前学習の有効性について検討する。
事前トレーニングによって、パフォーマンスを大幅に向上したエンドツーエンドモデルのトレーニングが可能になります。
論文 参考訳(メタデータ) (2020-04-05T02:47:16Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。