Cluster algebraic description of entanglement patterns for the BTZ black
hole
- URL: http://arxiv.org/abs/2108.10638v1
- Date: Tue, 24 Aug 2021 10:46:07 GMT
- Title: Cluster algebraic description of entanglement patterns for the BTZ black
hole
- Authors: Bercel Boldis and P\'eter L\'evay
- Abstract summary: We study the thermal state of a two dimensional conformal field theory which is dual to the static BTZ black hole in the high temperature limit.
We show that there is an underlying $C_N-1$ cluster algebra encoding entanglement patterns of the thermal state.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We study the thermal state of a two dimensional conformal field theory which
is dual to the static BTZ black hole in the high temperature limit. After
partitioning the boundary of the static BTZ slice into $N$ subsystems we show
that there is an underlying $C_{N-1}$ cluster algebra encoding entanglement
patterns of the thermal state. We also demonstrate that the polytope
encapsulating such patterns in a geometric manner for a fixed $N$ is the
cyclohedron ${\mathcal C}_{N-1}$. Alternatively these patterns of entanglement
can be represented in the space of geodesics (kinematic space) in terms of a
Zamolodchikov $Y$-system of $C_{N-1}$ type. The boundary condition for such an
$Y$-system is featuring the entropy of the BTZ black hole.
Related papers
- Entanglement Negativity and Replica Symmetry Breaking in General Holographic States [0.0]
In random tensor networks (RTNs) it was found that the dominant saddles computing the even R'enyi negativity $mathcalE (2k)$ generically break the $mathbbZ_2k$ replica symmetry.
This calls into question previous calculations of holographic negativity using 2D CFT techniques.
We show that in general holographic states, the saddles computing $mathcalE (2k)$ indeed break the $mathbbZ_2k$ replica symmetry.
arXiv Detail & Related papers (2024-09-19T18:00:00Z) - Small Circle Expansion for Adjoint QCD$_2$ with Periodic Boundary Conditions [0.0]
Supersymmetry is found at the adjoint mass-squared $g2 hvee/ (2pi)$, where $hvee$ is the dual Coxeter number of $G$.
We generalize our results to other gauge groupsG$, for which supersymmetry is found at the adjoint mass-squared $g2 hvee/ (2pi)$, where $hvee$ is the dual Coxeter number of $G$.
arXiv Detail & Related papers (2024-06-24T19:07:42Z) - Geometry of degenerate quantum states, configurations of $m$-planes and invariants on complex Grassmannians [55.2480439325792]
We show how to reduce the geometry of degenerate states to the non-abelian connection $A$.
We find independent invariants associated with each triple of subspaces.
Some of them generalize the Berry-Pancharatnam phase, and some do not have analogues for 1-dimensional subspaces.
arXiv Detail & Related papers (2024-04-04T06:39:28Z) - Entanglement entropy in type II$_1$ von Neumann algebra: examples in Double-Scaled SYK [6.990954253986022]
In this paper, we study the entanglement entropy $S_n$ of the fixed length state $|nrangle$ in Double-Scaled Sachdev-Ye-Kitaev model.
arXiv Detail & Related papers (2024-04-03T04:27:07Z) - Quantum Entanglement on Black Hole Horizons in String Theory and Holography [0.0]
We compute the exact one-loop partition function of $mathbbZ_N$ orbifolds of Euclidean BTZ black hole.
We analyze the tachyonic contribution to the modular integrand for the partition function known for odd integers $N>1$.
arXiv Detail & Related papers (2023-12-21T19:11:57Z) - Algebraic Aspects of Boundaries in the Kitaev Quantum Double Model [77.34726150561087]
We provide a systematic treatment of boundaries based on subgroups $Ksubseteq G$ with the Kitaev quantum double $D(G)$ model in the bulk.
The boundary sites are representations of a $*$-subalgebra $Xisubseteq D(G)$ and we explicate its structure as a strong $*$-quasi-Hopf algebra.
As an application of our treatment, we study patches with boundaries based on $K=G$ horizontally and $K=e$ vertically and show how these could be used in a quantum computer
arXiv Detail & Related papers (2022-08-12T15:05:07Z) - A New Look at the $C^{0}$-formulation of the Strong Cosmic Censorship
Conjecture [68.8204255655161]
We argue that for generic black hole parameters as initial conditions for Einstein equations, the metric is $C0$-extendable to a larger Lorentzian manifold.
We prove it violates the "complexity=volume" conjecture for a low-temperature hyperbolic AdS$_d+1$ black hole dual to a CFT living on a ($d-1$)-dimensional hyperboloid $H_d-1$.
arXiv Detail & Related papers (2022-06-17T12:14:33Z) - The Franke-Gorini-Kossakowski-Lindblad-Sudarshan (FGKLS) Equation for
Two-Dimensional Systems [62.997667081978825]
Open quantum systems can obey the Franke-Gorini-Kossakowski-Lindblad-Sudarshan (FGKLS) equation.
We exhaustively study the case of a Hilbert space dimension of $2$.
arXiv Detail & Related papers (2022-04-16T07:03:54Z) - Quantum double aspects of surface code models [77.34726150561087]
We revisit the Kitaev model for fault tolerant quantum computing on a square lattice with underlying quantum double $D(G)$ symmetry.
We show how our constructions generalise to $D(H)$ models based on a finite-dimensional Hopf algebra $H$.
arXiv Detail & Related papers (2021-06-25T17:03:38Z) - Existence of the first magic angle for the chiral model of bilayer
graphene [77.34726150561087]
Tarnopolsky-Kruchkov-Vishwanath (TKV) have proved that for inverse twist angles $alpha$ the effective Fermi velocity at the moir'e $K$ point vanishes.
We give a proof that the Fermi velocity vanishes for at least one $alpha$ between $alpha approx.586$.
arXiv Detail & Related papers (2021-04-13T20:37:00Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.