On the logical error rate of sparse quantum codes
- URL: http://arxiv.org/abs/2108.10645v4
- Date: Fri, 13 May 2022 09:40:58 GMT
- Title: On the logical error rate of sparse quantum codes
- Authors: Patricio Fuentes, Josu Etxezarreta Martinez, Pedro M. Crespo, and
Javier Garcia-Frias
- Abstract summary: We present an efficient coset-based method inspired by classical coding strategies to estimate degenerate errors.
We show that the proposed method presents a computational advantage for the family of Calderbank-Shor-Steane codes.
- Score: 0.26249027950824505
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The quantum paradigm presents a phenomenon known as degeneracy that should
improve the performance of quantum error correcting codes. However, the effects
of this mechanism are sometimes ignored when evaluating the performance of
sparse quantum codes and the logical error rate is not always correctly
reported. In this paper, we discuss previously existing methods to compute the
logical error rate and we present an efficient coset-based method inspired by
classical coding strategies to estimate degenerate errors. Additionally, we
show that the proposed method presents a computational advantage for the family
of Calderbank-Shor-Steane codes. We use this method to prove that degenerate
errors are frequent in a specific family of sparse quantum codes, which
stresses the importance of accurately reporting their performance. Our results
also reveal that the modified decoding strategies proposed in the literature
are an important tool to improve the performance of sparse quantum codes.
Related papers
- Geometrical Approach to Logical Qubit Fidelities of Neutral Atom CSS Codes [0.0]
We map a quantum error correction (QEC) code to a $mathZ$ lattice gauge theory with disorder.
In this Article, we adopt this statistical mapping to predict error rate thresholds for neutral atom architecture.
arXiv Detail & Related papers (2024-09-06T14:53:30Z) - Low-density parity-check representation of fault-tolerant quantum circuits [5.064729356056529]
In fault-tolerant quantum computing, quantum algorithms are implemented through quantum circuits capable of error correction.
This paper presents a toolkit for designing and analysing fault-tolerant quantum circuits.
arXiv Detail & Related papers (2024-03-15T12:56:38Z) - Testing the Accuracy of Surface Code Decoders [55.616364225463066]
Large-scale, fault-tolerant quantum computations will be enabled by quantum error-correcting codes (QECC)
This work presents the first systematic technique to test the accuracy and effectiveness of different QECC decoding schemes.
arXiv Detail & Related papers (2023-11-21T10:22:08Z) - Deep Quantum Error Correction [73.54643419792453]
Quantum error correction codes (QECC) are a key component for realizing the potential of quantum computing.
In this work, we efficiently train novel emphend-to-end deep quantum error decoders.
The proposed method demonstrates the power of neural decoders for QECC by achieving state-of-the-art accuracy.
arXiv Detail & Related papers (2023-01-27T08:16:26Z) - Automatic Implementation and Evaluation of Error-Correcting Codes for
Quantum Computing: An Open-Source Framework for Quantum Error Correction [2.1801327670218855]
Real quantum computers are plagued by frequent noise effects that cause errors during computations.
Quantum error-correcting codes address this problem by providing means to identify and correct corresponding errors.
We propose an open-source framework that automatically applies error-correcting codes for a given application followed by an automatic noise-aware quantum circuit simulation.
arXiv Detail & Related papers (2023-01-13T19:12:22Z) - Circuit Symmetry Verification Mitigates Quantum-Domain Impairments [69.33243249411113]
We propose circuit-oriented symmetry verification that are capable of verifying the commutativity of quantum circuits without the knowledge of the quantum state.
In particular, we propose the Fourier-temporal stabilizer (STS) technique, which generalizes the conventional quantum-domain formalism to circuit-oriented stabilizers.
arXiv Detail & Related papers (2021-12-27T21:15:35Z) - Efficient diagnostics for quantum error correction [0.0]
We present a scalable experimental approach based on Pauli error reconstruction to predict the performance of codes.
Numerical evidence demonstrates that our method significantly outperforms predictions based on standard error metrics for various error models.
arXiv Detail & Related papers (2021-08-24T16:28:29Z) - Performance of teleportation-based error correction circuits for bosonic
codes with noisy measurements [58.720142291102135]
We analyze the error-correction capabilities of rotation-symmetric codes using a teleportation-based error-correction circuit.
We find that with the currently achievable measurement efficiencies in microwave optics, bosonic rotation codes undergo a substantial decrease in their break-even potential.
arXiv Detail & Related papers (2021-08-02T16:12:13Z) - Crosstalk Suppression for Fault-tolerant Quantum Error Correction with
Trapped Ions [62.997667081978825]
We present a study of crosstalk errors in a quantum-computing architecture based on a single string of ions confined by a radio-frequency trap, and manipulated by individually-addressed laser beams.
This type of errors affects spectator qubits that, ideally, should remain unaltered during the application of single- and two-qubit quantum gates addressed at a different set of active qubits.
We microscopically model crosstalk errors from first principles and present a detailed study showing the importance of using a coherent vs incoherent error modelling and, moreover, discuss strategies to actively suppress this crosstalk at the gate level.
arXiv Detail & Related papers (2020-12-21T14:20:40Z) - Efficiently computing logical noise in quantum error correcting codes [0.0]
We show that measurement errors on readout qubits manifest as a renormalization on the effective logical noise.
We derive general methods for reducing the computational complexity of the exact effective logical noise by many orders of magnitude.
arXiv Detail & Related papers (2020-03-23T19:40:56Z) - Deterministic correction of qubit loss [48.43720700248091]
Loss of qubits poses one of the fundamental obstacles towards large-scale and fault-tolerant quantum information processors.
We experimentally demonstrate the implementation of a full cycle of qubit loss detection and correction on a minimal instance of a topological surface code.
arXiv Detail & Related papers (2020-02-21T19:48:53Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.