On the Effectiveness of Genetic Operations in Symbolic Regression
- URL: http://arxiv.org/abs/2108.10661v1
- Date: Tue, 24 Aug 2021 11:59:52 GMT
- Title: On the Effectiveness of Genetic Operations in Symbolic Regression
- Authors: Bogdan Burlacu, Michael Affenzeller, Michael Kommenda
- Abstract summary: We introduce a new subtree tracing approach for identifying the origins of genes in the structure of individuals.
We show that only a small fraction of ancestor individuals are responsible for the evolvement of the best solutions in the population.
- Score: 2.707154152696381
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This paper describes a methodology for analyzing the evolutionary dynamics of
genetic programming (GP) using genealogical information, diversity measures and
information about the fitness variation from parent to offspring. We introduce
a new subtree tracing approach for identifying the origins of genes in the
structure of individuals, and we show that only a small fraction of ancestor
individuals are responsible for the evolvement of the best solutions in the
population.
Related papers
- Gene-Level Representation Learning via Interventional Style Transfer in Optical Pooled Screening [3.7038542578642715]
We employ a style-transfer approach to learn gene-level feature representations from images of genetically perturbed cells obtained via Optical pooled screening (OPS)
Our method outperforms widely used engineered features in clustering gene representations according to gene function, demonstrating its utility for uncovering latent biological relationships.
arXiv Detail & Related papers (2024-06-11T22:56:50Z) - Predicting Genetic Mutation from Whole Slide Images via Biomedical-Linguistic Knowledge Enhanced Multi-label Classification [119.13058298388101]
We develop a Biological-knowledge enhanced PathGenomic multi-label Transformer to improve genetic mutation prediction performances.
BPGT first establishes a novel gene encoder that constructs gene priors by two carefully designed modules.
BPGT then designs a label decoder that finally performs genetic mutation prediction by two tailored modules.
arXiv Detail & Related papers (2024-06-05T06:42:27Z) - Advancing Gene Selection in Oncology: A Fusion of Deep Learning and
Sparsity for Precision Gene Selection [4.093503153499691]
This paper introduces two gene selection strategies for deep learning-based survival prediction models.
The first strategy uses a sparsity-inducing method while the second one uses importance based gene selection for identifying relevant genes.
arXiv Detail & Related papers (2024-03-04T10:44:57Z) - A Comparative Analysis of Gene Expression Profiling by Statistical and
Machine Learning Approaches [1.8954222800767324]
We discuss the biological and the methodological limitations of machine learning models to classify cancer samples.
Gene rankings are obtained from explainability methods adapted to these models.
We observe that the information learned by black-box neural networks is related to the notion of differential expression.
arXiv Detail & Related papers (2024-02-01T18:17:36Z) - Single-Cell Deep Clustering Method Assisted by Exogenous Gene
Information: A Novel Approach to Identifying Cell Types [50.55583697209676]
We develop an attention-enhanced graph autoencoder, which is designed to efficiently capture the topological features between cells.
During the clustering process, we integrated both sets of information and reconstructed the features of both cells and genes to generate a discriminative representation.
This research offers enhanced insights into the characteristics and distribution of cells, thereby laying the groundwork for early diagnosis and treatment of diseases.
arXiv Detail & Related papers (2023-11-28T09:14:55Z) - MuSe-GNN: Learning Unified Gene Representation From Multimodal
Biological Graph Data [22.938437500266847]
We introduce a novel model called Multimodal Similarity Learning Graph Neural Network.
It combines Multimodal Machine Learning and Deep Graph Neural Networks to learn gene representations from single-cell sequencing and spatial transcriptomic data.
Our model efficiently produces unified gene representations for the analysis of gene functions, tissue functions, diseases, and species evolution.
arXiv Detail & Related papers (2023-09-29T13:33:53Z) - Genetic InfoMax: Exploring Mutual Information Maximization in
High-Dimensional Imaging Genetics Studies [50.11449968854487]
Genome-wide association studies (GWAS) are used to identify relationships between genetic variations and specific traits.
Representation learning for imaging genetics is largely under-explored due to the unique challenges posed by GWAS.
We introduce a trans-modal learning framework Genetic InfoMax (GIM) to address the specific challenges of GWAS.
arXiv Detail & Related papers (2023-09-26T03:59:21Z) - Phylogeny-informed fitness estimation [58.720142291102135]
We propose phylogeny-informed fitness estimation, which exploits a population's phylogeny to estimate fitness evaluations.
Our results indicate that phylogeny-informed fitness estimation can mitigate the drawbacks of down-sampled lexicase.
This work serves as an initial step toward improving evolutionary algorithms by exploiting runtime phylogenetic analysis.
arXiv Detail & Related papers (2023-06-06T19:05:01Z) - Unsupervised ensemble-based phenotyping helps enhance the
discoverability of genes related to heart morphology [57.25098075813054]
We propose a new framework for gene discovery entitled Un Phenotype Ensembles.
It builds a redundant yet highly expressive representation by pooling a set of phenotypes learned in an unsupervised manner.
These phenotypes are then analyzed via (GWAS), retaining only highly confident and stable associations.
arXiv Detail & Related papers (2023-01-07T18:36:44Z) - Epigenetic evolution of deep convolutional models [81.21462458089142]
We build upon a previously proposed neuroevolution framework to evolve deep convolutional models.
We propose a convolutional layer layout which allows kernels of different shapes and sizes to coexist within the same layer.
The proposed layout enables the size and shape of individual kernels within a convolutional layer to be evolved with a corresponding new mutation operator.
arXiv Detail & Related papers (2021-04-12T12:45:16Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.