Gene-Level Representation Learning via Interventional Style Transfer in Optical Pooled Screening
- URL: http://arxiv.org/abs/2406.07763v1
- Date: Tue, 11 Jun 2024 22:56:50 GMT
- Title: Gene-Level Representation Learning via Interventional Style Transfer in Optical Pooled Screening
- Authors: Mahtab Bigverdi, Burkhard Hockendorf, Heming Yao, Phil Hanslovsky, Romain Lopez, David Richmond,
- Abstract summary: We employ a style-transfer approach to learn gene-level feature representations from images of genetically perturbed cells obtained via Optical pooled screening (OPS)
Our method outperforms widely used engineered features in clustering gene representations according to gene function, demonstrating its utility for uncovering latent biological relationships.
- Score: 3.7038542578642715
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Optical pooled screening (OPS) combines automated microscopy and genetic perturbations to systematically study gene function in a scalable and cost-effective way. Leveraging the resulting data requires extracting biologically informative representations of cellular perturbation phenotypes from images. We employ a style-transfer approach to learn gene-level feature representations from images of genetically perturbed cells obtained via OPS. Our method outperforms widely used engineered features in clustering gene representations according to gene function, demonstrating its utility for uncovering latent biological relationships. This approach offers a promising alternative to investigate the role of genes in health and disease.
Related papers
- Weighted Diversified Sampling for Efficient Data-Driven Single-Cell Gene-Gene Interaction Discovery [56.622854875204645]
We present an innovative approach utilizing data-driven computational tools, leveraging an advanced Transformer model, to unearth gene-gene interactions.
A novel weighted diversified sampling algorithm computes the diversity score of each data sample in just two passes of the dataset.
arXiv Detail & Related papers (2024-10-21T03:35:23Z) - Weakly Supervised Set-Consistency Learning Improves Morphological Profiling of Single-Cell Images [0.6491172192043603]
We propose a set-level consistency learning algorithm, Set-DINO, to improve learned representations of perturbation effects in single-cell images.
We conduct experiments on a large-scale Optical Pooled Screening dataset with more than 5000 genetic perturbations.
arXiv Detail & Related papers (2024-06-08T00:53:30Z) - Predicting Genetic Mutation from Whole Slide Images via Biomedical-Linguistic Knowledge Enhanced Multi-label Classification [119.13058298388101]
We develop a Biological-knowledge enhanced PathGenomic multi-label Transformer to improve genetic mutation prediction performances.
BPGT first establishes a novel gene encoder that constructs gene priors by two carefully designed modules.
BPGT then designs a label decoder that finally performs genetic mutation prediction by two tailored modules.
arXiv Detail & Related papers (2024-06-05T06:42:27Z) - BioDiscoveryAgent: An AI Agent for Designing Genetic Perturbation Experiments [112.25067497985447]
We introduce BioDiscoveryAgent, an agent that designs new experiments, reasons about their outcomes, and efficiently navigates the hypothesis space to reach desired solutions.
BioDiscoveryAgent can uniquely design new experiments without the need to train a machine learning model.
It achieves an average of 21% improvement in predicting relevant genetic perturbations across six datasets.
arXiv Detail & Related papers (2024-05-27T19:57:17Z) - Single-Cell Deep Clustering Method Assisted by Exogenous Gene
Information: A Novel Approach to Identifying Cell Types [50.55583697209676]
We develop an attention-enhanced graph autoencoder, which is designed to efficiently capture the topological features between cells.
During the clustering process, we integrated both sets of information and reconstructed the features of both cells and genes to generate a discriminative representation.
This research offers enhanced insights into the characteristics and distribution of cells, thereby laying the groundwork for early diagnosis and treatment of diseases.
arXiv Detail & Related papers (2023-11-28T09:14:55Z) - MuSe-GNN: Learning Unified Gene Representation From Multimodal
Biological Graph Data [22.938437500266847]
We introduce a novel model called Multimodal Similarity Learning Graph Neural Network.
It combines Multimodal Machine Learning and Deep Graph Neural Networks to learn gene representations from single-cell sequencing and spatial transcriptomic data.
Our model efficiently produces unified gene representations for the analysis of gene functions, tissue functions, diseases, and species evolution.
arXiv Detail & Related papers (2023-09-29T13:33:53Z) - Genetic InfoMax: Exploring Mutual Information Maximization in
High-Dimensional Imaging Genetics Studies [50.11449968854487]
Genome-wide association studies (GWAS) are used to identify relationships between genetic variations and specific traits.
Representation learning for imaging genetics is largely under-explored due to the unique challenges posed by GWAS.
We introduce a trans-modal learning framework Genetic InfoMax (GIM) to address the specific challenges of GWAS.
arXiv Detail & Related papers (2023-09-26T03:59:21Z) - Genetic heterogeneity analysis using genetic algorithm and network
science [2.6166087473624318]
Genome-wide association studies (GWAS) can identify disease susceptible genetic variables.
Genetic variables intertwined with genetic effects often exhibit lower effect-size.
This paper introduces a novel feature selection mechanism for GWAS, named Feature Co-selection Network (FCSNet)
arXiv Detail & Related papers (2023-08-12T01:28:26Z) - DDeMON: Ontology-based function prediction by Deep Learning from Dynamic
Multiplex Networks [0.7349727826230864]
The goal of this work is to explore how the fusion of systems' level information with temporal dynamics of gene expression can be used to predict novel gene functions.
We propose DDeMON, an approach for scalable, systems-level inference of function annotation using time-dependent multiscale biological information.
arXiv Detail & Related papers (2023-02-08T06:53:02Z) - Unsupervised ensemble-based phenotyping helps enhance the
discoverability of genes related to heart morphology [57.25098075813054]
We propose a new framework for gene discovery entitled Un Phenotype Ensembles.
It builds a redundant yet highly expressive representation by pooling a set of phenotypes learned in an unsupervised manner.
These phenotypes are then analyzed via (GWAS), retaining only highly confident and stable associations.
arXiv Detail & Related papers (2023-01-07T18:36:44Z) - Gene Function Prediction with Gene Interaction Networks: A Context Graph
Kernel Approach [24.234645183601998]
We propose to use a gene's context graph, i.e., the gene interaction network associated with the focal gene, to infer its functions.
In a kernel-based machine-learning framework, we design a context graph kernel to capture the information in context graphs.
arXiv Detail & Related papers (2022-04-22T02:54:01Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.