論文の概要: Low dephasing and robust micromagnet designs for silicon spin qubits
- arxiv url: http://arxiv.org/abs/2108.10769v1
- Date: Tue, 24 Aug 2021 14:27:57 GMT
- ステータス: 処理完了
- システム内更新日: 2023-03-17 07:37:06.311454
- Title: Low dephasing and robust micromagnet designs for silicon spin qubits
- Title(参考訳): シリコンスピン量子ビットの低劣化・ロバストマイクロマグネット設計
- Authors: N. I. Dumoulin Stuyck, F. A. Mohiyaddin, R. Li, M. Heyns, B.
Govoreanu, and I. P. Radu
- Abstract要約: 本稿では,量子ビットの劣化を最小限に抑えつつ,高速な量子ビット制御とアドレナビリティを実現するマグネットの設計について述べる。
この設計によるマイクロマグネットの劣化速度は、最先端の実装よりも最大3桁低い。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Using micromagnets to enable electron spin manipulation in silicon qubits has
emerged as a very popular method, enabling single-qubit gate fidelities larger
than 99:9%. However, these micromagnets also apply stray magnetic field
gradients onto the qubits, making the spin states susceptible to electric field
noise and limiting their coherence times. We describe here a magnet design that
minimizes qubit dephasing, while allowing for fast qubit control and
addressability. Specifically, we design and optimize magnet dimensions and
position relative to the quantum dots, minimizing dephasing from magnetic field
gradients. The micromagnet-induced dephasing rates with this design are up to
3-orders of magnitude lower than state-of-the-art implementations, allowing for
long coherence times. This design is robust against fabrication errors, and can
be combined with a wide variety of silicon qubit device geometries, thereby
allowing exploration of coherence limiting factors and novel upscaling
approaches.
- Abstract(参考訳): シリコン量子ビットでの電子スピン操作を可能にするためにマイクロマグネットが登場し、99:9%以上の単一量子ビットゲートフィデリティを実現している。
しかし、これらのマイクロマグネットは歪んだ磁場勾配を量子ビットに応用し、スピン状態は電場ノイズの影響を受けやすく、コヒーレンス時間を制限している。
ここでは、量子ビットの劣化を最小限に抑えつつ、高速な量子ビット制御とアドレス可能性を実現するマグネットの設計について述べる。
具体的には、磁場勾配による劣化を最小限に抑え、量子ドットに対する磁気次元と位置を設計、最適化する。
この設計によるマイクロマグネットによるデフェスレートは、最先端の実装よりも最大3桁低いため、長いコヒーレンス時間を可能にする。
この設計は製造誤差に対して堅牢であり、様々なシリコン量子ビットデバイスジオメトリと組み合わせることで、コヒーレンス制限因子の探索と新しいアップスケーリングアプローチを可能にする。
関連論文リスト
- Diamagnetic micro-chip traps for levitated nanoparticle entanglement experiments [0.0]
QGEM(Quantum Gravity Mediated Entanglement)プロトコルは、非相対論的スケールで重力相互作用の量子性を探索する新しい方法を提供する。
マイクロファブリケートワイヤを用いた磁気トラップを用いてナノ粒子を捕捉し, 干渉干渉による絡み合い実験を行う。
論文 参考訳(メタデータ) (2024-11-04T17:48:32Z) - Imaging magnetism evolution of magnetite to megabar pressure range with
quantum sensors in diamond anvil cell [57.91882523720623]
我々は,高感度・サブスケール空間分解能を有するメガバール圧力のその場磁気検出技術を開発した。
強強強磁性体(アルファ-Fe3O4)から弱い強磁性体(ベータ-Fe3O4)、最後に非磁性体(ガンマ-Fe3O4)への大気圧域におけるFe3O4のマクロ磁気遷移を観察する。
提案手法は磁気系のスピン軌道結合と磁気-超伝導の競合について検討することができる。
論文 参考訳(メタデータ) (2023-06-13T15:19:22Z) - Modular nanomagnet design for spin qubits confined in a linear chain [0.0]
線形鎖に配置されたスピン量子ビットを駆動する設計を提案する。
ナノマグネットは、量子ビット鎖の片側に横向きに配置され、ナノマグネットは2つの量子ビットに1つずつ配置される。
縦方向および横方向のフィールドコンポーネントは、アドレス可能性および駆動フィールドとして機能する。
論文 参考訳(メタデータ) (2022-12-22T11:17:32Z) - Measuring the magnon-photon coupling in shaped ferromagnets: tuning of
the resonance frequency [50.591267188664666]
キャビティ光子と強磁性スピンの励起は ハイブリッドアーキテクチャで情報交換できる
速度向上は通常、電磁キャビティの幾何学を最適化することで達成される。
強磁性体の基本周波数を設定することにより、強磁性体の幾何学も重要な役割を果たすことを示す。
論文 参考訳(メタデータ) (2022-07-08T11:28:31Z) - Quantum Control of Spin Qubits Using Nanomagnets [0.09423257767158633]
ナノスケール磁気の電圧制御を用いたスピン量子ビットに対処する新しい手法を提案する。
ナノマグネットの電界駆動の周波数をナノスケールの体積に制限されたスピンのラーモア周波数に調整することにより、フォールトトレラント量子コンピューティングに近づく忠実度を持つ単一量子ビット量子ゲートを実現することができることを示す。
論文 参考訳(メタデータ) (2022-03-31T00:01:02Z) - Flopping-mode electric dipole spin resonance in phosphorus donor qubits
in silicon [0.0]
シリコン中のリン供与体に基づく単一スピン量子ビットは、大規模量子コンピュータの候補として期待できる。
二重蛍光体ドナー量子ドットの電子状態と核スピン状態を組み合わせたフリップモード電気双極子スピン共鳴量子ビットを提案する。
論文 参考訳(メタデータ) (2021-05-06T18:11:00Z) - Surpassing the Energy Resolution Limit with ferromagnetic torque sensors [55.41644538483948]
標準量子限界における熱力学ノイズと機械的検出ノイズを考慮した最適磁場分解能の評価を行った。
近年の文献で指摘されているエネルギー分解限界(ERL, Energy Resolution Limit)は, 桁違いに超えることがある。
論文 参考訳(メタデータ) (2021-04-29T15:44:12Z) - Fast high-fidelity single-qubit gates for flip-flop qubits in silicon [68.8204255655161]
フリップフロップ量子ビットは、シリコン中の反平行ドナー結合電子とドナー核スピンを持つ状態において符号化される。
相互作用する電子スピンと核スピンによって形成されるマルチレベルシステムについて検討する。
低周波雑音下で高速かつロバストな単一ビットゲートを生成する最適制御方式を提案する。
論文 参考訳(メタデータ) (2021-01-27T18:37:30Z) - Quantum coherent spin-electric control in a molecular nanomagnet at
clock transitions [57.50861918173065]
ナノスケールでのスピンの電気的制御は、スピントロニクスのアーキテクチャ上の利点を提供する。
分子スピン材料における電場(E-場)感度の最近の実証が注目されている。
これまでに報告された電子場感度はかなり弱く、より強いスピン電結合を持つ分子をどうやって設計するかという問題を引き起こした。
論文 参考訳(メタデータ) (2020-05-03T09:27:31Z) - Optimal coupling of HoW$_{10}$ molecular magnets to superconducting
circuits near spin clock transitions [85.83811987257297]
我々は,HoW$_10$磁性クラスターの純および磁性希釈結晶とマイクロ波超伝導コプラナー導波路とのカップリングについて検討した。
以上の結果から, 分子系のスピン時計状態は, スピン光子相互作用の大きさと, 不要な磁気ノイズ源からの十分な分離を両立させる, 有望な戦略であることがわかった。
論文 参考訳(メタデータ) (2019-11-18T11:03:06Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。