論文の概要: Bridging Unsupervised and Supervised Depth from Focus via All-in-Focus
Supervision
- arxiv url: http://arxiv.org/abs/2108.10843v1
- Date: Tue, 24 Aug 2021 17:09:13 GMT
- ステータス: 処理完了
- システム内更新日: 2021-08-25 15:10:21.592883
- Title: Bridging Unsupervised and Supervised Depth from Focus via All-in-Focus
Supervision
- Title(参考訳): All-in-Focus Supervision による教師なし奥行きのブリッジ
- Authors: Ning-Hsu Wang, Ren Wang, Yu-Lun Liu, Yu-Hao Huang, Yu-Lin Chang,
Chia-Ping Chen and Kevin Jou
- Abstract要約: 提案手法は、地上の真理深度で監督的に訓練するか、AiF画像で監督的に訓練することができる。
種々の実験において,本手法は定量的かつ定性的に,最先端の手法よりも優れていることを示す。
- 参考スコア(独自算出の注目度): 10.547816678110417
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Depth estimation is a long-lasting yet important task in computer vision.
Most of the previous works try to estimate depth from input images and assume
images are all-in-focus (AiF), which is less common in real-world applications.
On the other hand, a few works take defocus blur into account and consider it
as another cue for depth estimation. In this paper, we propose a method to
estimate not only a depth map but an AiF image from a set of images with
different focus positions (known as a focal stack). We design a shared
architecture to exploit the relationship between depth and AiF estimation. As a
result, the proposed method can be trained either supervisedly with ground
truth depth, or \emph{unsupervisedly} with AiF images as supervisory signals.
We show in various experiments that our method outperforms the state-of-the-art
methods both quantitatively and qualitatively, and also has higher efficiency
in inference time.
- Abstract(参考訳): 奥行き推定はコンピュータビジョンにおいて長く続く重要なタスクである。
以前の研究のほとんどは、入力画像から深度を推定し、実世界のアプリケーションでは一般的でないオールインフォーカス(AiF)であると仮定している。
一方、デフォーカスのぼかしを考慮に入れ、深度推定のための別の手がかりと考える作品もいくつかある。
本稿では,焦点位置の異なる画像群(焦点スタックとして知られる)から深度マップだけでなくaif画像も推定する手法を提案する。
深度とAiF推定の関係を生かした共有アーキテクチャを設計する。
その結果、提案手法は、地上の真理深度で指導的に訓練するか、AiF画像を監視信号として訓練することができる。
種々の実験において,本手法は定量的かつ定性的に最先端の手法より優れ,推論時間の効率も高いことを示す。
関連論文リスト
- Blur aware metric depth estimation with multi-focus plenoptic cameras [8.508198765617196]
多焦点レンズカメラからの原画像のみを用いた新しい距離深度推定アルゴリズムを提案する。
提案手法は、焦点距離の異なる複数のマイクロレンズを用いるマルチフォーカス構成に特に適している。
論文 参考訳(メタデータ) (2023-08-08T13:38:50Z) - FS-Depth: Focal-and-Scale Depth Estimation from a Single Image in Unseen
Indoor Scene [57.26600120397529]
実際の(見えない)屋内シーンの単一の画像から絶対深度マップを予測するのには、長年不適切な問題だった。
本研究では,未確認屋内シーンの単一画像から絶対深度マップを正確に学習するための焦点・スケール深度推定モデルを開発した。
論文 参考訳(メタデータ) (2023-07-27T04:49:36Z) - Depth and DOF Cues Make A Better Defocus Blur Detector [27.33757097343283]
Defocus blur detection(DBD)は、画像内のin-focus領域とout-of-focus領域を分離する。
以前のアプローチでは、デフォーカスのぼやけた領域に焦点をあてた均一な領域を誤って間違えていた。
我々はD-DFFNetと呼ばれるアプローチを提案し、奥行きとDOFの手がかりを暗黙的に組み込む。
論文 参考訳(メタデータ) (2023-06-20T07:03:37Z) - Fully Self-Supervised Depth Estimation from Defocus Clue [79.63579768496159]
スパース焦点スタックから深度を純粋に推定する自己教師型フレームワークを提案する。
筆者らのフレームワークは,深度とAIF画像の接地構造の必要性を回避し,より優れた予測を得られることを示す。
論文 参考訳(メタデータ) (2023-03-19T19:59:48Z) - Multi-task Learning for Monocular Depth and Defocus Estimations with
Real Images [3.682618267671887]
既存の手法の多くは、深度推定とデフォーカス推定を2つの別々のタスクとして扱い、それら間の強いつながりを無視している。
本稿では、2つのデコーダを持つエンコーダからなるマルチタスク学習ネットワークを提案し、単一の焦点画像から深度とデフォーカスマップを推定する。
我々の深度とデフォーカス推定は、他の最先端アルゴリズムよりも大幅に性能が向上する。
論文 参考訳(メタデータ) (2022-08-21T08:59:56Z) - Deep Depth from Focal Stack with Defocus Model for Camera-Setting
Invariance [19.460887007137607]
シーン深度を推定するための入力として焦点スタックを利用する,フォーカス/デフォーカス(DFF)からの学習に基づく深度を提案する。
提案手法は, 合成ドメインギャップに対して頑健であり, 最先端の性能を示す。
論文 参考訳(メタデータ) (2022-02-26T04:21:08Z) - Single image deep defocus estimation and its applications [82.93345261434943]
画像パッチを20レベルの曖昧さの1つに分類するために、ディープニューラルネットワークをトレーニングします。
トレーニングされたモデルは、反復重み付きガイドフィルタを適用して改善するパッチのぼかしを決定するために使用される。
その結果、デフォーカスマップは各ピクセルのぼやけた度合いの情報を運ぶ。
論文 参考訳(メタデータ) (2021-07-30T06:18:16Z) - Defocus Blur Detection via Depth Distillation [64.78779830554731]
初めてDBDに深度情報を導入します。
より詳しくは, 地底の真理と, 十分に訓練された深度推定ネットワークから抽出した深度から, デフォーカスのぼかしを学習する。
我々の手法は、2つの一般的なデータセット上で11の最先端の手法より優れています。
論文 参考訳(メタデータ) (2020-07-16T04:58:09Z) - Single Image Depth Estimation Trained via Depth from Defocus Cues [105.67073923825842]
単一のRGB画像から深度を推定することはコンピュータビジョンの基本的な課題である。
この作業では、異なる視点ではなく、フォーカスキューからの奥行きに依存しています。
我々は,KITTIとMake3Dデータセットの教師あり手法と同等な結果を提示し,教師なし学習手法より優れていることを示す。
論文 参考訳(メタデータ) (2020-01-14T20:22:54Z) - Video Depth Estimation by Fusing Flow-to-Depth Proposals [65.24533384679657]
本稿では,映像深度推定のためのフロー・ツー・ディープス・レイヤの異なる手法を提案する。
モデルは、フロー・トゥ・ディープス層、カメラ・ポーズ・リファインメント・モジュール、ディープ・フュージョン・ネットワークから構成される。
提案手法は,最先端の深度推定法より優れ,合理的なデータセット一般化能力を有する。
論文 参考訳(メタデータ) (2019-12-30T10:45:57Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。