論文の概要: Bias Mitigated Learning from Differentially Private Synthetic Data: A
Cautionary Tale
- arxiv url: http://arxiv.org/abs/2108.10934v1
- Date: Tue, 24 Aug 2021 19:56:44 GMT
- ステータス: 処理完了
- システム内更新日: 2021-08-26 13:05:33.758632
- Title: Bias Mitigated Learning from Differentially Private Synthetic Data: A
Cautionary Tale
- Title(参考訳): Bias Mitigated Learning from Differentially Private Synthetic Data: a Cautionary Tale
- Authors: Sahra Ghalebikesabi, Harrison Wilde, Jack Jewson, Arnaud Doucet,
Sebastian Vollmer, Chris Holmes
- Abstract要約: バイアスは、合成データ分布が実データ分布の不整合推定であるため、すべての解析に影響を与える可能性がある。
民営化確率比を用いた複数のバイアス緩和戦略を提案する。
バイアス緩和は、合成データの一般的な応用に、シンプルで効果的なプライバシー準拠の強化をもたらすことを示す。
- 参考スコア(独自算出の注目度): 13.881022208028751
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Increasing interest in privacy-preserving machine learning has led to new
models for synthetic private data generation from undisclosed real data.
However, mechanisms of privacy preservation introduce artifacts in the
resulting synthetic data that have a significant impact on downstream tasks
such as learning predictive models or inference. In particular, bias can affect
all analyses as the synthetic data distribution is an inconsistent estimate of
the real-data distribution. We propose several bias mitigation strategies using
privatized likelihood ratios that have general applicability to differentially
private synthetic data generative models. Through large-scale empirical
evaluation, we show that bias mitigation provides simple and effective
privacy-compliant augmentation for general applications of synthetic data.
However, the work highlights that even after bias correction significant
challenges remain on the usefulness of synthetic private data generators for
tasks such as prediction and inference.
- Abstract(参考訳): プライバシ保護機械学習への関心が高まり、未公開の実データから合成プライベートデータを生成する新しいモデルが生まれた。
しかし、プライバシ保存のメカニズムは、予測モデルや推論の学習のような下流タスクに大きな影響を与える結果合成データにアーティファクトを導入する。
特に、合成データ分布が実データ分布の不整合推定であるため、バイアスはすべての解析に影響を及ぼす可能性がある。
本研究では, 差動合成データ生成モデルに適用可能な民営化確率比を用いたバイアス緩和手法を提案する。
大規模実証評価を通じて, バイアス緩和は, 一般の合成データに対して, 単純かつ効果的なプライバシー準拠の強化をもたらすことを示した。
しかし, 偏差補正後においても, 予測や推測などのタスクにおいて, 合成プライベートデータ生成器の有用性に重要な課題が残されている。
関連論文リスト
- The Real Deal Behind the Artificial Appeal: Inferential Utility of Tabular Synthetic Data [40.165159490379146]
評価値が不偏であっても, 偽陽性の発見率(タイプ1の誤り)は不可避的に高いことが示唆された。
以前提案された補正係数が使用されているにもかかわらず、この問題は深層生成モデルに対して持続する。
論文 参考訳(メタデータ) (2023-12-13T02:04:41Z) - Trading Off Scalability, Privacy, and Performance in Data Synthesis [11.698554876505446]
a) Howsoエンジンを導入し、(b)ランダムプロジェクションに基づく合成データ生成フレームワークを提案する。
Howsoエンジンが生成する合成データは、プライバシーと正確性に優れており、その結果、総合的なスコアが最高の結果となる。
提案するランダム・プロジェクション・ベース・フレームワークは,高い精度で合成データを生成することができ,スケーラビリティが最速である。
論文 参考訳(メタデータ) (2023-12-09T02:04:25Z) - Boosting Data Analytics With Synthetic Volume Expansion [3.568650932986342]
本稿では,合成データに対する統計的手法の有効性と,合成データのプライバシーリスクについて考察する。
この枠組みにおける重要な発見は、合成データに対する統計的手法の誤差率は、より多くの合成データを追加することで減少するが、最終的には上昇または安定化する可能性があることを明らかにする世代効果である。
論文 参考訳(メタデータ) (2023-10-27T01:57:27Z) - Reimagining Synthetic Tabular Data Generation through Data-Centric AI: A
Comprehensive Benchmark [56.8042116967334]
合成データは、機械学習モデルのトレーニングの代替となる。
合成データが現実世界データの複雑なニュアンスを反映することを保証することは、難しい作業です。
本稿では,データ中心型AI技術の統合による合成データ生成プロセスのガイドの可能性について検討する。
論文 参考訳(メタデータ) (2023-10-25T20:32:02Z) - Towards Generalizable Data Protection With Transferable Unlearnable
Examples [50.628011208660645]
本稿では、転送不可能な例を生成することによって、新しい一般化可能なデータ保護手法を提案する。
私たちの知る限りでは、これはデータ分散の観点からデータのプライバシを調べる最初のソリューションです。
論文 参考訳(メタデータ) (2023-05-18T04:17:01Z) - Synthetic data, real errors: how (not) to publish and use synthetic data [86.65594304109567]
生成過程が下流MLタスクにどのように影響するかを示す。
本稿では、生成プロセスモデルパラメータの後方分布を近似するために、Deep Generative Ensemble (DGE)を導入する。
論文 参考訳(メタデータ) (2023-05-16T07:30:29Z) - Beyond Privacy: Navigating the Opportunities and Challenges of Synthetic
Data [91.52783572568214]
合成データは、機械学習の世界において支配的な力となり、データセットを個々のニーズに合わせて調整できる未来を約束する。
合成データのより広範な妥当性と適用のために,コミュニティが克服すべき根本的な課題について論じる。
論文 参考訳(メタデータ) (2023-04-07T16:38:40Z) - Private Set Generation with Discriminative Information [63.851085173614]
異なるプライベートなデータ生成は、データプライバシの課題に対する有望な解決策である。
既存のプライベートな生成モデルは、合成サンプルの有用性に苦慮している。
我々は,最先端アプローチのサンプルユーティリティを大幅に改善する,シンプルで効果的な手法を提案する。
論文 参考訳(メタデータ) (2022-11-07T10:02:55Z) - Investigating Bias with a Synthetic Data Generator: Empirical Evidence
and Philosophical Interpretation [66.64736150040093]
機械学習の応用は、私たちの社会でますます広まりつつある。
リスクは、データに埋め込まれたバイアスを体系的に広めることである。
本稿では,特定の種類のバイアスとその組み合わせで合成データを生成するフレームワークを導入することにより,バイアスを分析することを提案する。
論文 参考訳(メタデータ) (2022-09-13T11:18:50Z) - An Analysis of the Deployment of Models Trained on Private Tabular
Synthetic Data: Unexpected Surprises [4.129847064263057]
異なるプライベート(DP)合成データセットは、機械学習モデルをトレーニングするための強力なアプローチである。
差分プライベートな合成データ生成が分類に与える影響について検討する。
論文 参考訳(メタデータ) (2021-06-15T21:00:57Z) - Measuring Utility and Privacy of Synthetic Genomic Data [3.635321290763711]
人工ゲノムデータを生成するための5つの最先端モデルの実用性とプライバシ保護を最初に評価する。
全体として、ボード全体でうまく機能する合成ゲノムデータを生成するための単一のアプローチは存在しない。
論文 参考訳(メタデータ) (2021-02-05T17:41:01Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。