Bias Mitigated Learning from Differentially Private Synthetic Data: A
Cautionary Tale
- URL: http://arxiv.org/abs/2108.10934v1
- Date: Tue, 24 Aug 2021 19:56:44 GMT
- Title: Bias Mitigated Learning from Differentially Private Synthetic Data: A
Cautionary Tale
- Authors: Sahra Ghalebikesabi, Harrison Wilde, Jack Jewson, Arnaud Doucet,
Sebastian Vollmer, Chris Holmes
- Abstract summary: Bias can affect all analyses as the synthetic data distribution is an inconsistent estimate of the real-data distribution.
We propose several bias mitigation strategies using privatized likelihood ratios.
We show that bias mitigation provides simple and effective privacy-compliant augmentation for general applications of synthetic data.
- Score: 13.881022208028751
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Increasing interest in privacy-preserving machine learning has led to new
models for synthetic private data generation from undisclosed real data.
However, mechanisms of privacy preservation introduce artifacts in the
resulting synthetic data that have a significant impact on downstream tasks
such as learning predictive models or inference. In particular, bias can affect
all analyses as the synthetic data distribution is an inconsistent estimate of
the real-data distribution. We propose several bias mitigation strategies using
privatized likelihood ratios that have general applicability to differentially
private synthetic data generative models. Through large-scale empirical
evaluation, we show that bias mitigation provides simple and effective
privacy-compliant augmentation for general applications of synthetic data.
However, the work highlights that even after bias correction significant
challenges remain on the usefulness of synthetic private data generators for
tasks such as prediction and inference.
Related papers
- The Real Deal Behind the Artificial Appeal: Inferential Utility of Tabular Synthetic Data [40.165159490379146]
We show that the rate of false-positive findings (type 1 error) will be unacceptably high, even when the estimates are unbiased.
Despite the use of a previously proposed correction factor, this problem persists for deep generative models.
arXiv Detail & Related papers (2023-12-13T02:04:41Z) - Trading Off Scalability, Privacy, and Performance in Data Synthesis [11.698554876505446]
We introduce (a) the Howso engine, and (b) our proposed random projection based synthetic data generation framework.
We show that the synthetic data generated by Howso engine has good privacy and accuracy, which results the best overall score.
Our proposed random projection based framework can generate synthetic data with highest accuracy score, and has the fastest scalability.
arXiv Detail & Related papers (2023-12-09T02:04:25Z) - Boosting Data Analytics With Synthetic Volume Expansion [3.568650932986342]
This article explores the effectiveness of statistical methods on synthetic data and the privacy risks of synthetic data.
A key finding within this framework is the generational effect, which reveals that the error rate of statistical methods on synthetic data decreases with the addition of more synthetic data but may eventually rise or stabilize.
arXiv Detail & Related papers (2023-10-27T01:57:27Z) - Reimagining Synthetic Tabular Data Generation through Data-Centric AI: A
Comprehensive Benchmark [56.8042116967334]
Synthetic data serves as an alternative in training machine learning models.
ensuring that synthetic data mirrors the complex nuances of real-world data is a challenging task.
This paper explores the potential of integrating data-centric AI techniques to guide the synthetic data generation process.
arXiv Detail & Related papers (2023-10-25T20:32:02Z) - Towards Generalizable Data Protection With Transferable Unlearnable
Examples [50.628011208660645]
We present a novel, generalizable data protection method by generating transferable unlearnable examples.
To the best of our knowledge, this is the first solution that examines data privacy from the perspective of data distribution.
arXiv Detail & Related papers (2023-05-18T04:17:01Z) - Synthetic data, real errors: how (not) to publish and use synthetic data [86.65594304109567]
We show how the generative process affects the downstream ML task.
We introduce Deep Generative Ensemble (DGE) to approximate the posterior distribution over the generative process model parameters.
arXiv Detail & Related papers (2023-05-16T07:30:29Z) - Beyond Privacy: Navigating the Opportunities and Challenges of Synthetic
Data [91.52783572568214]
Synthetic data may become a dominant force in the machine learning world, promising a future where datasets can be tailored to individual needs.
We discuss which fundamental challenges the community needs to overcome for wider relevance and application of synthetic data.
arXiv Detail & Related papers (2023-04-07T16:38:40Z) - Private Set Generation with Discriminative Information [63.851085173614]
Differentially private data generation is a promising solution to the data privacy challenge.
Existing private generative models are struggling with the utility of synthetic samples.
We introduce a simple yet effective method that greatly improves the sample utility of state-of-the-art approaches.
arXiv Detail & Related papers (2022-11-07T10:02:55Z) - Investigating Bias with a Synthetic Data Generator: Empirical Evidence
and Philosophical Interpretation [66.64736150040093]
Machine learning applications are becoming increasingly pervasive in our society.
Risk is that they will systematically spread the bias embedded in data.
We propose to analyze biases by introducing a framework for generating synthetic data with specific types of bias and their combinations.
arXiv Detail & Related papers (2022-09-13T11:18:50Z) - An Analysis of the Deployment of Models Trained on Private Tabular
Synthetic Data: Unexpected Surprises [4.129847064263057]
Diferentially private (DP) synthetic datasets are a powerful approach for training machine learning models.
We study the effects of differentially private synthetic data generation on classification.
arXiv Detail & Related papers (2021-06-15T21:00:57Z) - Measuring Utility and Privacy of Synthetic Genomic Data [3.635321290763711]
We provide the first evaluation of the utility and the privacy protection of five state-of-the-art models for generating synthetic genomic data.
Overall, there is no single approach for generating synthetic genomic data that performs well across the board.
arXiv Detail & Related papers (2021-02-05T17:41:01Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.