Investigating Bias with a Synthetic Data Generator: Empirical Evidence
and Philosophical Interpretation
- URL: http://arxiv.org/abs/2209.05889v1
- Date: Tue, 13 Sep 2022 11:18:50 GMT
- Title: Investigating Bias with a Synthetic Data Generator: Empirical Evidence
and Philosophical Interpretation
- Authors: Alessandro Castelnovo, Riccardo Crupi, Nicole Inverardi, Daniele
Regoli, Andrea Cosentini
- Abstract summary: Machine learning applications are becoming increasingly pervasive in our society.
Risk is that they will systematically spread the bias embedded in data.
We propose to analyze biases by introducing a framework for generating synthetic data with specific types of bias and their combinations.
- Score: 66.64736150040093
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Machine learning applications are becoming increasingly pervasive in our
society. Since these decision-making systems rely on data-driven learning, risk
is that they will systematically spread the bias embedded in data. In this
paper, we propose to analyze biases by introducing a framework for generating
synthetic data with specific types of bias and their combinations. We delve
into the nature of these biases discussing their relationship to moral and
justice frameworks. Finally, we exploit our proposed synthetic data generator
to perform experiments on different scenarios, with various bias combinations.
We thus analyze the impact of biases on performance and fairness metrics both
in non-mitigated and mitigated machine learning models.
Related papers
- Learning for Counterfactual Fairness from Observational Data [62.43249746968616]
Fairness-aware machine learning aims to eliminate biases of learning models against certain subgroups described by certain protected (sensitive) attributes such as race, gender, and age.
A prerequisite for existing methods to achieve counterfactual fairness is the prior human knowledge of the causal model for the data.
In this work, we address the problem of counterfactually fair prediction from observational data without given causal models by proposing a novel framework CLAIRE.
arXiv Detail & Related papers (2023-07-17T04:08:29Z) - D-BIAS: A Causality-Based Human-in-the-Loop System for Tackling
Algorithmic Bias [57.87117733071416]
We propose D-BIAS, a visual interactive tool that embodies human-in-the-loop AI approach for auditing and mitigating social biases.
A user can detect the presence of bias against a group by identifying unfair causal relationships in the causal network.
For each interaction, say weakening/deleting a biased causal edge, the system uses a novel method to simulate a new (debiased) dataset.
arXiv Detail & Related papers (2022-08-10T03:41:48Z) - Prisoners of Their Own Devices: How Models Induce Data Bias in
Performative Prediction [4.874780144224057]
A biased model can make decisions that disproportionately harm certain groups in society.
Much work has been devoted to measuring unfairness in static ML environments, but not in dynamic, performative prediction ones.
We propose a taxonomy to characterize bias in the data, and study cases where it is shaped by model behaviour.
arXiv Detail & Related papers (2022-06-27T10:56:04Z) - Unsupervised Learning of Unbiased Visual Representations [10.871587311621974]
Deep neural networks are known for their inability to learn robust representations when biases exist in the dataset.
We propose a fully unsupervised debiasing framework, consisting of three steps.
We employ state-of-the-art supervised debiasing techniques to obtain an unbiased model.
arXiv Detail & Related papers (2022-04-26T10:51:50Z) - Learning Debiased Models with Dynamic Gradient Alignment and
Bias-conflicting Sample Mining [39.00256193731365]
Deep neural networks notoriously suffer from dataset biases which are detrimental to model robustness, generalization and fairness.
We propose a two-stage debiasing scheme to combat against the intractable unknown biases.
arXiv Detail & Related papers (2021-11-25T14:50:10Z) - DECAF: Generating Fair Synthetic Data Using Causally-Aware Generative
Networks [71.6879432974126]
We introduce DECAF: a GAN-based fair synthetic data generator for tabular data.
We show that DECAF successfully removes undesired bias and is capable of generating high-quality synthetic data.
We provide theoretical guarantees on the generator's convergence and the fairness of downstream models.
arXiv Detail & Related papers (2021-10-25T12:39:56Z) - Bias Mitigated Learning from Differentially Private Synthetic Data: A
Cautionary Tale [13.881022208028751]
Bias can affect all analyses as the synthetic data distribution is an inconsistent estimate of the real-data distribution.
We propose several bias mitigation strategies using privatized likelihood ratios.
We show that bias mitigation provides simple and effective privacy-compliant augmentation for general applications of synthetic data.
arXiv Detail & Related papers (2021-08-24T19:56:44Z) - An Analysis of the Deployment of Models Trained on Private Tabular
Synthetic Data: Unexpected Surprises [4.129847064263057]
Diferentially private (DP) synthetic datasets are a powerful approach for training machine learning models.
We study the effects of differentially private synthetic data generation on classification.
arXiv Detail & Related papers (2021-06-15T21:00:57Z) - Representative & Fair Synthetic Data [68.8204255655161]
We present a framework to incorporate fairness constraints into the self-supervised learning process.
We generate a representative as well as fair version of the UCI Adult census data set.
We consider representative & fair synthetic data a promising future building block to teach algorithms not on historic worlds, but rather on the worlds that we strive to live in.
arXiv Detail & Related papers (2021-04-07T09:19:46Z) - Using Data Assimilation to Train a Hybrid Forecast System that Combines
Machine-Learning and Knowledge-Based Components [52.77024349608834]
We consider the problem of data-assisted forecasting of chaotic dynamical systems when the available data is noisy partial measurements.
We show that by using partial measurements of the state of the dynamical system, we can train a machine learning model to improve predictions made by an imperfect knowledge-based model.
arXiv Detail & Related papers (2021-02-15T19:56:48Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.