Layer Adaptive Node Selection in Bayesian Neural Networks: Statistical
Guarantees and Implementation Details
- URL: http://arxiv.org/abs/2108.11000v1
- Date: Wed, 25 Aug 2021 00:48:07 GMT
- Title: Layer Adaptive Node Selection in Bayesian Neural Networks: Statistical
Guarantees and Implementation Details
- Authors: Sanket Jantre and Shrijita Bhattacharya and Tapabrata Maiti
- Abstract summary: Sparse deep neural networks have proven to be efficient for predictive model building in large-scale studies.
We propose a Bayesian sparse solution using spike-and-slab Gaussian priors to allow for node selection during training.
We establish the fundamental result of variational posterior consistency together with the characterization of prior parameters.
- Score: 0.5156484100374059
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Sparse deep neural networks have proven to be efficient for predictive model
building in large-scale studies. Although several works have studied
theoretical and numerical properties of sparse neural architectures, they have
primarily focused on the edge selection. Sparsity through edge selection might
be intuitively appealing; however, it does not necessarily reduce the
structural complexity of a network. Instead pruning excessive nodes in each
layer leads to a structurally sparse network which would have lower
computational complexity and memory footprint. We propose a Bayesian sparse
solution using spike-and-slab Gaussian priors to allow for node selection
during training. The use of spike-and-slab prior alleviates the need of an
ad-hoc thresholding rule for pruning redundant nodes from a network. In
addition, we adopt a variational Bayes approach to circumvent the computational
challenges of traditional Markov Chain Monte Carlo (MCMC) implementation. In
the context of node selection, we establish the fundamental result of
variational posterior consistency together with the characterization of prior
parameters. In contrast to the previous works, our theoretical development
relaxes the assumptions of the equal number of nodes and uniform bounds on all
network weights, thereby accommodating sparse networks with layer-dependent
node structures or coefficient bounds. With a layer-wise characterization of
prior inclusion probabilities, we also discuss optimal contraction rates of the
variational posterior. Finally, we provide empirical evidence to substantiate
that our theoretical work facilitates layer-wise optimal node recovery together
with competitive predictive performance.
Related papers
- Concurrent Training and Layer Pruning of Deep Neural Networks [0.0]
We propose an algorithm capable of identifying and eliminating irrelevant layers of a neural network during the early stages of training.
We employ a structure using residual connections around nonlinear network sections that allow the flow of information through the network once a nonlinear section is pruned.
arXiv Detail & Related papers (2024-06-06T23:19:57Z) - Reinforcement Learning for Node Selection in Branch-and-Bound [52.2648997215667]
Current state-of-the-art selectors utilize either hand-crafted ensembles that automatically switch between naive sub-node selectors, or learned node selectors that rely on individual node data.
We propose a novel simulation technique that uses reinforcement learning (RL) while considering the entire tree state, rather than just isolated nodes.
arXiv Detail & Related papers (2023-09-29T19:55:56Z) - Spike-and-slab shrinkage priors for structurally sparse Bayesian neural networks [0.16385815610837165]
Sparse deep learning addresses challenges by recovering a sparse representation of the underlying target function.
Deep neural architectures compressed via structured sparsity provide low latency inference, higher data throughput, and reduced energy consumption.
We propose structurally sparse Bayesian neural networks which prune excessive nodes with (i) Spike-and-Slab Group Lasso (SS-GL), and (ii) Spike-and-Slab Group Horseshoe (SS-GHS) priors.
arXiv Detail & Related papers (2023-08-17T17:14:18Z) - Globally Optimal Training of Neural Networks with Threshold Activation
Functions [63.03759813952481]
We study weight decay regularized training problems of deep neural networks with threshold activations.
We derive a simplified convex optimization formulation when the dataset can be shattered at a certain layer of the network.
arXiv Detail & Related papers (2023-03-06T18:59:13Z) - Robust Training and Verification of Implicit Neural Networks: A
Non-Euclidean Contractive Approach [64.23331120621118]
This paper proposes a theoretical and computational framework for training and robustness verification of implicit neural networks.
We introduce a related embedded network and show that the embedded network can be used to provide an $ell_infty$-norm box over-approximation of the reachable sets of the original network.
We apply our algorithms to train implicit neural networks on the MNIST dataset and compare the robustness of our models with the models trained via existing approaches in the literature.
arXiv Detail & Related papers (2022-08-08T03:13:24Z) - Robust Learning of Parsimonious Deep Neural Networks [0.0]
We propose a simultaneous learning and pruning algorithm capable of identifying and eliminating irrelevant structures in a neural network.
We derive a novel hyper-prior distribution over the prior parameters that is crucial for their optimal selection.
We evaluate the proposed algorithm on the MNIST data set and commonly used fully connected and convolutional LeNet architectures.
arXiv Detail & Related papers (2022-05-10T03:38:55Z) - On the Neural Tangent Kernel Analysis of Randomly Pruned Neural Networks [91.3755431537592]
We study how random pruning of the weights affects a neural network's neural kernel (NTK)
In particular, this work establishes an equivalence of the NTKs between a fully-connected neural network and its randomly pruned version.
arXiv Detail & Related papers (2022-03-27T15:22:19Z) - Critical Initialization of Wide and Deep Neural Networks through Partial
Jacobians: General Theory and Applications [6.579523168465526]
We introduce emphpartial Jacobians of a network, defined as derivatives of preactivations in layer $l$ with respect to preactivations in layer $l_0leq l$.
We derive recurrence relations for the norms of partial Jacobians and utilize these relations to analyze criticality of deep fully connected neural networks with LayerNorm and/or residual connections.
arXiv Detail & Related papers (2021-11-23T20:31:42Z) - Bayesian Nested Neural Networks for Uncertainty Calibration and Adaptive
Compression [40.35734017517066]
Nested networks or slimmable networks are neural networks whose architectures can be adjusted instantly during testing time.
Recent studies have focused on a "nested dropout" layer, which is able to order the nodes of a layer by importance during training.
arXiv Detail & Related papers (2021-01-27T12:34:58Z) - Finite Versus Infinite Neural Networks: an Empirical Study [69.07049353209463]
kernel methods outperform fully-connected finite-width networks.
Centered and ensembled finite networks have reduced posterior variance.
Weight decay and the use of a large learning rate break the correspondence between finite and infinite networks.
arXiv Detail & Related papers (2020-07-31T01:57:47Z) - MSE-Optimal Neural Network Initialization via Layer Fusion [68.72356718879428]
Deep neural networks achieve state-of-the-art performance for a range of classification and inference tasks.
The use of gradient combined nonvolutionity renders learning susceptible to novel problems.
We propose fusing neighboring layers of deeper networks that are trained with random variables.
arXiv Detail & Related papers (2020-01-28T18:25:15Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.