Robust Learning of Parsimonious Deep Neural Networks
- URL: http://arxiv.org/abs/2205.04650v1
- Date: Tue, 10 May 2022 03:38:55 GMT
- Title: Robust Learning of Parsimonious Deep Neural Networks
- Authors: Valentin Frank Ingmar Guenter and Athanasios Sideris
- Abstract summary: We propose a simultaneous learning and pruning algorithm capable of identifying and eliminating irrelevant structures in a neural network.
We derive a novel hyper-prior distribution over the prior parameters that is crucial for their optimal selection.
We evaluate the proposed algorithm on the MNIST data set and commonly used fully connected and convolutional LeNet architectures.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We propose a simultaneous learning and pruning algorithm capable of
identifying and eliminating irrelevant structures in a neural network during
the early stages of training. Thus, the computational cost of subsequent
training iterations, besides that of inference, is considerably reduced. Our
method, based on variational inference principles, learns the posterior
distribution of Bernoulli random variables multiplying the units/filters
similarly to adaptive dropout. We derive a novel hyper-prior distribution over
the prior parameters that is crucial for their optimal selection in a way that
the Bernoulli parameters practically converge to either 0 or 1 establishing a
deterministic final network. Our algorithm is robust in the sense that it
achieves consistent pruning levels and prediction accuracy regardless of weight
initialization or the size of the starting network. We provide an analysis of
its convergence properties establishing theoretical and practical pruning
conditions. We evaluate the proposed algorithm on the MNIST data set and
commonly used fully connected and convolutional LeNet architectures. The
simulations show that our method achieves pruning levels on par with state-of
the-art methods for structured pruning, while maintaining better test-accuracy
and more importantly in a manner robust with respect to network initialization
and initial size.
Related papers
- Complexity-Aware Training of Deep Neural Networks for Optimal Structure Discovery [0.0]
We propose a novel algorithm for combined unit/filter and layer pruning of deep neural networks that functions during training and without requiring a pre-trained network to apply.
Our algorithm optimally trades-off learning accuracy and pruning levels while balancing layer vs. unit/filter pruning and computational vs. parameter complexity using only three user-defined parameters.
arXiv Detail & Related papers (2024-11-14T02:00:22Z) - Concurrent Training and Layer Pruning of Deep Neural Networks [0.0]
We propose an algorithm capable of identifying and eliminating irrelevant layers of a neural network during the early stages of training.
We employ a structure using residual connections around nonlinear network sections that allow the flow of information through the network once a nonlinear section is pruned.
arXiv Detail & Related papers (2024-06-06T23:19:57Z) - The Cascaded Forward Algorithm for Neural Network Training [61.06444586991505]
We propose a new learning framework for neural networks, namely Cascaded Forward (CaFo) algorithm, which does not rely on BP optimization as that in FF.
Unlike FF, our framework directly outputs label distributions at each cascaded block, which does not require generation of additional negative samples.
In our framework each block can be trained independently, so it can be easily deployed into parallel acceleration systems.
arXiv Detail & Related papers (2023-03-17T02:01:11Z) - Unsupervised Learning of Initialization in Deep Neural Networks via
Maximum Mean Discrepancy [74.34895342081407]
We propose an unsupervised algorithm to find good initialization for input data.
We first notice that each parameter configuration in the parameter space corresponds to one particular downstream task of d-way classification.
We then conjecture that the success of learning is directly related to how diverse downstream tasks are in the vicinity of the initial parameters.
arXiv Detail & Related papers (2023-02-08T23:23:28Z) - Subquadratic Overparameterization for Shallow Neural Networks [60.721751363271146]
We provide an analytical framework that allows us to adopt standard neural training strategies.
We achieve the desiderata viaak-Lojasiewicz, smoothness, and standard assumptions.
arXiv Detail & Related papers (2021-11-02T20:24:01Z) - Layer Adaptive Node Selection in Bayesian Neural Networks: Statistical
Guarantees and Implementation Details [0.5156484100374059]
Sparse deep neural networks have proven to be efficient for predictive model building in large-scale studies.
We propose a Bayesian sparse solution using spike-and-slab Gaussian priors to allow for node selection during training.
We establish the fundamental result of variational posterior consistency together with the characterization of prior parameters.
arXiv Detail & Related papers (2021-08-25T00:48:07Z) - Learning Structures for Deep Neural Networks [99.8331363309895]
We propose to adopt the efficient coding principle, rooted in information theory and developed in computational neuroscience.
We show that sparse coding can effectively maximize the entropy of the output signals.
Our experiments on a public image classification dataset demonstrate that using the structure learned from scratch by our proposed algorithm, one can achieve a classification accuracy comparable to the best expert-designed structure.
arXiv Detail & Related papers (2021-05-27T12:27:24Z) - On the Explicit Role of Initialization on the Convergence and Implicit
Bias of Overparametrized Linear Networks [1.0323063834827415]
We present a novel analysis of single-hidden-layer linear networks trained under gradient flow.
We show that the squared loss converges exponentially to its optimum.
We derive a novel non-asymptotic upper-bound on the distance between the trained network and the min-norm solution.
arXiv Detail & Related papers (2021-05-13T15:13:51Z) - Distance-Based Regularisation of Deep Networks for Fine-Tuning [116.71288796019809]
We develop an algorithm that constrains a hypothesis class to a small sphere centred on the initial pre-trained weights.
Empirical evaluation shows that our algorithm works well, corroborating our theoretical results.
arXiv Detail & Related papers (2020-02-19T16:00:47Z) - MSE-Optimal Neural Network Initialization via Layer Fusion [68.72356718879428]
Deep neural networks achieve state-of-the-art performance for a range of classification and inference tasks.
The use of gradient combined nonvolutionity renders learning susceptible to novel problems.
We propose fusing neighboring layers of deeper networks that are trained with random variables.
arXiv Detail & Related papers (2020-01-28T18:25:15Z) - Provable Benefit of Orthogonal Initialization in Optimizing Deep Linear
Networks [39.856439772974454]
We show that the width needed for efficient convergence to a global minimum is independent of the depth.
Our results suggest an explanation for the recent empirical successes found by initializing very deep non-linear networks according to the principle of dynamical isometry.
arXiv Detail & Related papers (2020-01-16T18:48:34Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.