論文の概要: Social Norm Bias: Residual Harms of Fairness-Aware Algorithms
- arxiv url: http://arxiv.org/abs/2108.11056v1
- Date: Wed, 25 Aug 2021 05:54:56 GMT
- ステータス: 処理完了
- システム内更新日: 2021-08-26 19:47:02.313725
- Title: Social Norm Bias: Residual Harms of Fairness-Aware Algorithms
- Title(参考訳): 社会的ノームバイアス:公正なアルゴリズムの残酷さ
- Authors: Myra Cheng, Maria De-Arteaga, Lester Mackey, Adam Tauman Kalai
- Abstract要約: 社会ノームバイアス (Social Norm Bias, SNoB) は、自動意思決定システムによって示される、微妙だが連続的な差別の一種である。
我々は、アルゴリズムの予測が性規範とどのように関連しているかを測定することでSNoBを定量化する。
後処理の介入は、この種のバイアスを全く軽減しないことを示す。
- 参考スコア(独自算出の注目度): 21.50551404445654
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Many modern learning algorithms mitigate bias by enforcing fairness across
coarsely-defined groups related to a sensitive attribute like gender or race.
However, the same algorithms seldom account for the within-group biases that
arise due to the heterogeneity of group members. In this work, we characterize
Social Norm Bias (SNoB), a subtle but consequential type of discrimination that
may be exhibited by automated decision-making systems, even when these systems
achieve group fairness objectives. We study this issue through the lens of
gender bias in occupation classification from biographies. We quantify SNoB by
measuring how an algorithm's predictions are associated with conformity to
gender norms, which is measured using a machine learning approach. This
framework reveals that for classification tasks related to male-dominated
occupations, fairness-aware classifiers favor biographies written in ways that
align with masculine gender norms. We compare SNoB across fairness intervention
techniques and show that post-processing interventions do not mitigate this
type of bias at all.
- Abstract(参考訳): 多くの現代の学習アルゴリズムは、性別や人種のような繊細な属性に関連する粗い定義されたグループに公平性を与えることでバイアスを軽減している。
しかし、同じアルゴリズムは、グループメンバーの多様性によって生じるグループ内のバイアスをほとんど考慮しない。
本研究では,これらのシステムが集団的公平性目標を達成しても,自動意思決定システムによって示されるような,微妙だが連続的な差別のタイプである社会規範バイアス(snob)を特徴付ける。
本稿では, 職業分類における性別偏見のレンズを通して, この問題を考察する。
我々は、アルゴリズムの予測がジェンダー規範とどのように関連しているかを測定することでSNoBを定量化し、機械学習アプローチを用いて測定する。
この枠組みは、男性優位の職業に関連する分類タスクにおいて、フェアネスウェア分類器は男性的ジェンダー規範に合致した方法で書かれた伝記を好むことを明らかにする。
我々は、公平な介入技術間でSNoBを比較し、後処理の介入がこの種のバイアスを全く軽減しないことを示す。
関連論文リスト
- GenderBias-\emph{VL}: Benchmarking Gender Bias in Vision Language Models via Counterfactual Probing [72.0343083866144]
本稿では,GenderBias-emphVLベンチマークを用いて,大規模視覚言語モデルにおける職業関連性バイアスの評価を行う。
ベンチマークを用いて15のオープンソースLVLMと最先端の商用APIを広範囲に評価した。
既存のLVLMでは男女差が広くみられた。
論文 参考訳(メタデータ) (2024-06-30T05:55:15Z) - Deep Generative Views to Mitigate Gender Classification Bias Across
Gender-Race Groups [0.8594140167290097]
本稿では,性別・人種グループ間の偏見を低減し,分類精度を向上させるためのバイアス緩和戦略を提案する。
我々は、ジェンダー分類バイアスを軽減するために、生成的視点、構造化学習、そして明らかな学習の力を利用する。
論文 参考訳(メタデータ) (2022-08-17T16:23:35Z) - D-BIAS: A Causality-Based Human-in-the-Loop System for Tackling
Algorithmic Bias [57.87117733071416]
D-BIASは、人間のループ内AIアプローチを具現化し、社会的バイアスを監査し軽減する視覚対話型ツールである。
ユーザは、因果ネットワークにおける不公平な因果関係を識別することにより、グループに対する偏見の存在を検出することができる。
それぞれのインタラクション、例えばバイアスのある因果縁の弱体化/削除は、新しい(偏りのある)データセットをシミュレートするために、新しい方法を用いている。
論文 参考訳(メタデータ) (2022-08-10T03:41:48Z) - Understanding Unfairness in Fraud Detection through Model and Data Bias
Interactions [4.159343412286401]
アルゴリズムの不公平性は、データ内のモデルとバイアスの間の相互作用に起因すると我々は主張する。
フェアネスブラインドMLアルゴリズムが示す公平さと正確さのトレードオフに関する仮説を、異なるデータバイアス設定下で検討する。
論文 参考訳(メタデータ) (2022-07-13T15:18:30Z) - Towards A Holistic View of Bias in Machine Learning: Bridging
Algorithmic Fairness and Imbalanced Learning [8.602734307457387]
保護されたグループに対するアルゴリズムの公正性を達成する上で重要な要素は、基礎となるトレーニングデータにおいて、クラスと保護されたグループの不均衡を同時に減少させることである。
本稿では、スキュークラス分布と保護された特徴の両方に対処する新しいオーバーサンプリングアルゴリズム、Fair Oversamplingを提案する。
論文 参考訳(メタデータ) (2022-07-13T09:48:52Z) - Fair Group-Shared Representations with Normalizing Flows [68.29997072804537]
本研究では,異なるグループに属する個人を1つのグループにマッピングできる公正表現学習アルゴリズムを開発した。
提案手法は,他の公正表現学習アルゴリズムと競合することを示す。
論文 参考訳(メタデータ) (2022-01-17T10:49:49Z) - Anatomizing Bias in Facial Analysis [86.79402670904338]
既存の顔分析システムでは、特定の集団群に対して偏りのある結果が得られることが示されている。
これらのシステムは、個人の性別、アイデンティティ、肌のトーンに基づいて差別されないようにすることが義務づけられている。
これはAIシステムにおけるバイアスの識別と緩和の研究につながった。
論文 参考訳(メタデータ) (2021-12-13T09:51:13Z) - Balancing Biases and Preserving Privacy on Balanced Faces in the Wild [50.915684171879036]
現在の顔認識(FR)モデルには、人口統計バイアスが存在する。
さまざまな民族と性別のサブグループにまたがる偏見を測定するために、我々のバランス・フェイススをWildデータセットに導入します。
真偽と偽のサンプルペアを区別するために1点のスコアしきい値に依存すると、最適以下の結果が得られます。
本稿では,最先端ニューラルネットワークから抽出した顔特徴を用いたドメイン適応学習手法を提案する。
論文 参考訳(メタデータ) (2021-03-16T15:05:49Z) - Characterizing Intersectional Group Fairness with Worst-Case Comparisons [0.0]
我々は、公平度指標が交差性のレンズの下で検討される必要がある理由について議論する。
既存のグループ公平度指標の定義を拡張するための単純な最悪のケース比較方法を提案する。
現代の文脈における交差点の公平性を扱うための社会的、法的、政治的枠組みで締めくくります。
論文 参考訳(メタデータ) (2021-01-05T17:44:33Z) - One-vs.-One Mitigation of Intersectional Bias: A General Method to
Extend Fairness-Aware Binary Classification [0.48733623015338234]
1-vs.ワン・マイティゲーション(英: One-vs. One Mitigation)は、二項分類のためのフェアネス認識機械学習と、センシティブ属性に関連する各サブグループの比較プロセスである。
本手法は,すべての設定において従来の手法よりも交叉バイアスを緩和する。
論文 参考訳(メタデータ) (2020-10-26T11:35:39Z) - Gender Stereotype Reinforcement: Measuring the Gender Bias Conveyed by
Ranking Algorithms [68.85295025020942]
本稿では,性別ステレオタイプをサポートする検索エンジンの傾向を定量化するジェンダーステレオタイプ強化(GSR)尺度を提案する。
GSRは、表現上の害を定量化できる情報検索のための、最初の特別に調整された尺度である。
論文 参考訳(メタデータ) (2020-09-02T20:45:04Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。