Monocular Depth Estimation Primed by Salient Point Detection and
Normalized Hessian Loss
- URL: http://arxiv.org/abs/2108.11098v1
- Date: Wed, 25 Aug 2021 07:51:09 GMT
- Title: Monocular Depth Estimation Primed by Salient Point Detection and
Normalized Hessian Loss
- Authors: Lam Huynh, Matteo Pedone, Phong Nguyen, Jiri Matas, Esa Rahtu, Janne
Heikkila
- Abstract summary: We propose an accurate and lightweight framework for monocular depth estimation based on a self-attention mechanism stemming from salient point detection.
We introduce a normalized Hessian loss term invariant to scaling and shear along the depth direction, which is shown to substantially improve the accuracy.
The proposed method achieves state-of-the-art results on NYU-Depth-v2 and KITTI while using 3.1-38.4 times smaller model in terms of the number of parameters than baseline approaches.
- Score: 43.950140695759764
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Deep neural networks have recently thrived on single image depth estimation.
That being said, current developments on this topic highlight an apparent
compromise between accuracy and network size. This work proposes an accurate
and lightweight framework for monocular depth estimation based on a
self-attention mechanism stemming from salient point detection. Specifically,
we utilize a sparse set of keypoints to train a FuSaNet model that consists of
two major components: Fusion-Net and Saliency-Net. In addition, we introduce a
normalized Hessian loss term invariant to scaling and shear along the depth
direction, which is shown to substantially improve the accuracy. The proposed
method achieves state-of-the-art results on NYU-Depth-v2 and KITTI while using
3.1-38.4 times smaller model in terms of the number of parameters than baseline
approaches. Experiments on the SUN-RGBD further demonstrate the
generalizability of the proposed method.
Related papers
- Deep Neighbor Layer Aggregation for Lightweight Self-Supervised
Monocular Depth Estimation [1.6775954077761863]
We present a fully convolutional depth estimation network using contextual feature fusion.
Compared to UNet++ and HRNet, we use high-resolution and low-resolution features to reserve information on small targets and fast-moving objects.
Our method reduces the parameters without sacrificing accuracy.
arXiv Detail & Related papers (2023-09-17T13:40:15Z) - VA-DepthNet: A Variational Approach to Single Image Depth Prediction [163.14849753700682]
VA-DepthNet is a simple, effective, and accurate deep neural network approach for the single-image depth prediction problem.
The paper demonstrates the usefulness of the proposed approach via extensive evaluation and ablation analysis over several benchmark datasets.
arXiv Detail & Related papers (2023-02-13T17:55:58Z) - PLADE-Net: Towards Pixel-Level Accuracy for Self-Supervised Single-View
Depth Estimation with Neural Positional Encoding and Distilled Matting Loss [49.66736599668501]
We propose a self-supervised single-view pixel-level accurate depth estimation network, called PLADE-Net.
Our method shows unprecedented accuracy levels, exceeding 95% in terms of the $delta1$ metric on the KITTI dataset.
arXiv Detail & Related papers (2021-03-12T15:54:46Z) - CodeVIO: Visual-Inertial Odometry with Learned Optimizable Dense Depth [83.77839773394106]
We present a lightweight, tightly-coupled deep depth network and visual-inertial odometry system.
We provide the network with previously marginalized sparse features from VIO to increase the accuracy of initial depth prediction.
We show that it can run in real-time with single-thread execution while utilizing GPU acceleration only for the network and code Jacobian.
arXiv Detail & Related papers (2020-12-18T09:42:54Z) - HR-Depth: High Resolution Self-Supervised Monocular Depth Estimation [14.81943833870932]
We present an improvedDepthNet, HR-Depth, with two effective strategies.
Using Resnet-18 as the encoder, HR-Depth surpasses all pre-vious state-of-the-art(SoTA) methods with the least param-eters at both high and low resolution.
arXiv Detail & Related papers (2020-12-14T09:15:15Z) - Multi-view Depth Estimation using Epipolar Spatio-Temporal Networks [87.50632573601283]
We present a novel method for multi-view depth estimation from a single video.
Our method achieves temporally coherent depth estimation results by using a novel Epipolar Spatio-Temporal (EST) transformer.
To reduce the computational cost, inspired by recent Mixture-of-Experts models, we design a compact hybrid network.
arXiv Detail & Related papers (2020-11-26T04:04:21Z) - Deep Multi-view Depth Estimation with Predicted Uncertainty [11.012201499666503]
We employ a dense-optical-flow network to compute correspondences and then triangulate the point cloud to obtain an initial depth map.
To further increase the triangulation accuracy, we introduce a depth-refinement network (DRN) that optimize the initial depth map based on the image's contextual cues.
arXiv Detail & Related papers (2020-11-19T00:22:09Z) - A Single Stream Network for Robust and Real-time RGB-D Salient Object
Detection [89.88222217065858]
We design a single stream network to use the depth map to guide early fusion and middle fusion between RGB and depth.
This model is 55.5% lighter than the current lightest model and runs at a real-time speed of 32 FPS when processing a $384 times 384$ image.
arXiv Detail & Related papers (2020-07-14T04:40:14Z) - Guiding Monocular Depth Estimation Using Depth-Attention Volume [38.92495189498365]
We propose guiding depth estimation to favor planar structures that are ubiquitous especially in indoor environments.
Experiments on two popular indoor datasets, NYU-Depth-v2 and ScanNet, show that our method achieves state-of-the-art depth estimation results.
arXiv Detail & Related papers (2020-04-06T15:45:52Z) - DELTAS: Depth Estimation by Learning Triangulation And densification of
Sparse points [14.254472131009653]
Multi-view stereo (MVS) is the golden mean between the accuracy of active depth sensing and the practicality of monocular depth estimation.
Cost volume based approaches employing 3D convolutional neural networks (CNNs) have considerably improved the accuracy of MVS systems.
We propose an efficient depth estimation approach by first (a) detecting and evaluating descriptors for interest points, then (b) learning to match and triangulate a small set of interest points, and finally (c) densifying this sparse set of 3D points using CNNs.
arXiv Detail & Related papers (2020-03-19T17:56:41Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.