Deep Neighbor Layer Aggregation for Lightweight Self-Supervised
Monocular Depth Estimation
- URL: http://arxiv.org/abs/2309.09272v2
- Date: Sun, 7 Jan 2024 13:15:02 GMT
- Title: Deep Neighbor Layer Aggregation for Lightweight Self-Supervised
Monocular Depth Estimation
- Authors: Wang Boya, Wang Shuo, Ye Dong, Dou Ziwen
- Abstract summary: We present a fully convolutional depth estimation network using contextual feature fusion.
Compared to UNet++ and HRNet, we use high-resolution and low-resolution features to reserve information on small targets and fast-moving objects.
Our method reduces the parameters without sacrificing accuracy.
- Score: 1.6775954077761863
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: With the frequent use of self-supervised monocular depth estimation in
robotics and autonomous driving, the model's efficiency is becoming
increasingly important. Most current approaches apply much larger and more
complex networks to improve the precision of depth estimation. Some researchers
incorporated Transformer into self-supervised monocular depth estimation to
achieve better performance. However, this method leads to high parameters and
high computation. We present a fully convolutional depth estimation network
using contextual feature fusion. Compared to UNet++ and HRNet, we use
high-resolution and low-resolution features to reserve information on small
targets and fast-moving objects instead of long-range fusion. We further
promote depth estimation results employing lightweight channel attention based
on convolution in the decoder stage. Our method reduces the parameters without
sacrificing accuracy. Experiments on the KITTI benchmark show that our method
can get better results than many large models, such as Monodepth2, with only 30
parameters. The source code is available at
https://github.com/boyagesmile/DNA-Depth.
Related papers
- Self-supervised Monocular Depth Estimation with Large Kernel Attention [30.44895226042849]
We propose a self-supervised monocular depth estimation network to get finer details.
Specifically, we propose a decoder based on large kernel attention, which can model long-distance dependencies.
Our method achieves competitive results on the KITTI dataset.
arXiv Detail & Related papers (2024-09-26T14:44:41Z) - Metrically Scaled Monocular Depth Estimation through Sparse Priors for
Underwater Robots [0.0]
We formulate a deep learning model that fuses sparse depth measurements from triangulated features to improve the depth predictions.
The network is trained in a supervised fashion on the forward-looking underwater dataset, FLSea.
The method achieves real-time performance, running at 160 FPS on a laptop GPU and 7 FPS on a single CPU core.
arXiv Detail & Related papers (2023-10-25T16:32:31Z) - Single Image Depth Prediction Made Better: A Multivariate Gaussian Take [163.14849753700682]
We introduce an approach that performs continuous modeling of per-pixel depth.
Our method's accuracy (named MG) is among the top on the KITTI depth-prediction benchmark leaderboard.
arXiv Detail & Related papers (2023-03-31T16:01:03Z) - Monocular Visual-Inertial Depth Estimation [66.71452943981558]
We present a visual-inertial depth estimation pipeline that integrates monocular depth estimation and visual-inertial odometry.
Our approach performs global scale and shift alignment against sparse metric depth, followed by learning-based dense alignment.
We evaluate on the TartanAir and VOID datasets, observing up to 30% reduction in RMSE with dense scale alignment.
arXiv Detail & Related papers (2023-03-21T18:47:34Z) - DepthFormer: Exploiting Long-Range Correlation and Local Information for
Accurate Monocular Depth Estimation [50.08080424613603]
Long-range correlation is essential for accurate monocular depth estimation.
We propose to leverage the Transformer to model this global context with an effective attention mechanism.
Our proposed model, termed DepthFormer, surpasses state-of-the-art monocular depth estimation methods with prominent margins.
arXiv Detail & Related papers (2022-03-27T05:03:56Z) - Monocular Depth Estimation Primed by Salient Point Detection and
Normalized Hessian Loss [43.950140695759764]
We propose an accurate and lightweight framework for monocular depth estimation based on a self-attention mechanism stemming from salient point detection.
We introduce a normalized Hessian loss term invariant to scaling and shear along the depth direction, which is shown to substantially improve the accuracy.
The proposed method achieves state-of-the-art results on NYU-Depth-v2 and KITTI while using 3.1-38.4 times smaller model in terms of the number of parameters than baseline approaches.
arXiv Detail & Related papers (2021-08-25T07:51:09Z) - Sparse Auxiliary Networks for Unified Monocular Depth Prediction and
Completion [56.85837052421469]
Estimating scene geometry from data obtained with cost-effective sensors is key for robots and self-driving cars.
In this paper, we study the problem of predicting dense depth from a single RGB image with optional sparse measurements from low-cost active depth sensors.
We introduce Sparse Networks (SANs), a new module enabling monodepth networks to perform both the tasks of depth prediction and completion.
arXiv Detail & Related papers (2021-03-30T21:22:26Z) - CodeVIO: Visual-Inertial Odometry with Learned Optimizable Dense Depth [83.77839773394106]
We present a lightweight, tightly-coupled deep depth network and visual-inertial odometry system.
We provide the network with previously marginalized sparse features from VIO to increase the accuracy of initial depth prediction.
We show that it can run in real-time with single-thread execution while utilizing GPU acceleration only for the network and code Jacobian.
arXiv Detail & Related papers (2020-12-18T09:42:54Z) - HR-Depth: High Resolution Self-Supervised Monocular Depth Estimation [14.81943833870932]
We present an improvedDepthNet, HR-Depth, with two effective strategies.
Using Resnet-18 as the encoder, HR-Depth surpasses all pre-vious state-of-the-art(SoTA) methods with the least param-eters at both high and low resolution.
arXiv Detail & Related papers (2020-12-14T09:15:15Z) - A Single Stream Network for Robust and Real-time RGB-D Salient Object
Detection [89.88222217065858]
We design a single stream network to use the depth map to guide early fusion and middle fusion between RGB and depth.
This model is 55.5% lighter than the current lightest model and runs at a real-time speed of 32 FPS when processing a $384 times 384$ image.
arXiv Detail & Related papers (2020-07-14T04:40:14Z) - MiniNet: An extremely lightweight convolutional neural network for
real-time unsupervised monocular depth estimation [22.495019810166397]
We propose a new powerful network with a recurrent module to achieve the capability of a deep network.
We maintain an extremely lightweight size for real-time high performance unsupervised monocular depth prediction from video sequences.
Our new model can run at a speed of about 110 frames per second (fps) on a single GPU, 37 fps on a single CPU, and 2 fps on a Raspberry Pi 3.
arXiv Detail & Related papers (2020-06-27T12:13:22Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.