Learning Geometry-Guided Depth via Projective Modeling for Monocular 3D Object Detection
- URL: http://arxiv.org/abs/2107.13931v2
- Date: Wed, 24 Apr 2024 12:20:54 GMT
- Title: Learning Geometry-Guided Depth via Projective Modeling for Monocular 3D Object Detection
- Authors: Yinmin Zhang, Xinzhu Ma, Shuai Yi, Jun Hou, Zhihui Wang, Wanli Ouyang, Dan Xu,
- Abstract summary: We learn geometry-guided depth estimation with projective modeling to advance monocular 3D object detection.
Specifically, a principled geometry formula with projective modeling of 2D and 3D depth predictions in the monocular 3D object detection network is devised.
Our method remarkably improves the detection performance of the state-of-the-art monocular-based method without extra data by 2.80% on the moderate test setting.
- Score: 70.71934539556916
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: As a crucial task of autonomous driving, 3D object detection has made great progress in recent years. However, monocular 3D object detection remains a challenging problem due to the unsatisfactory performance in depth estimation. Most existing monocular methods typically directly regress the scene depth while ignoring important relationships between the depth and various geometric elements (e.g. bounding box sizes, 3D object dimensions, and object poses). In this paper, we propose to learn geometry-guided depth estimation with projective modeling to advance monocular 3D object detection. Specifically, a principled geometry formula with projective modeling of 2D and 3D depth predictions in the monocular 3D object detection network is devised. We further implement and embed the proposed formula to enable geometry-aware deep representation learning, allowing effective 2D and 3D interactions for boosting the depth estimation. Moreover, we provide a strong baseline through addressing substantial misalignment between 2D annotation and projected boxes to ensure robust learning with the proposed geometric formula. Experiments on the KITTI dataset show that our method remarkably improves the detection performance of the state-of-the-art monocular-based method without extra data by 2.80% on the moderate test setting. The model and code will be released at https://github.com/YinminZhang/MonoGeo.
Related papers
- MonoDGP: Monocular 3D Object Detection with Decoupled-Query and Geometry-Error Priors [24.753860375872215]
This paper presents a Transformer-based monocular 3D object detection method called MonoDGP.
It adopts perspective-invariant geometry errors to modify the projection formula.
Our method demonstrates state-of-the-art performance on the KITTI benchmark without extra data.
arXiv Detail & Related papers (2024-10-25T14:31:43Z) - GUPNet++: Geometry Uncertainty Propagation Network for Monocular 3D
Object Detection [95.8940731298518]
We propose a novel Geometry Uncertainty Propagation Network (GUPNet++)
It models the uncertainty propagation relationship of the geometry projection during training, improving the stability and efficiency of the end-to-end model learning.
Experiments show that the proposed approach not only obtains (state-of-the-art) SOTA performance in image-based monocular 3D detection but also demonstrates superiority in efficacy with a simplified framework.
arXiv Detail & Related papers (2023-10-24T08:45:15Z) - Monocular 3D Object Detection with Depth from Motion [74.29588921594853]
We take advantage of camera ego-motion for accurate object depth estimation and detection.
Our framework, named Depth from Motion (DfM), then uses the established geometry to lift 2D image features to the 3D space and detects 3D objects thereon.
Our framework outperforms state-of-the-art methods by a large margin on the KITTI benchmark.
arXiv Detail & Related papers (2022-07-26T15:48:46Z) - MonoJSG: Joint Semantic and Geometric Cost Volume for Monocular 3D
Object Detection [10.377424252002792]
monocular 3D object detection lacks accurate depth recovery ability.
Deep neural network (DNN) enables monocular depth-sensing from high-level learned features.
We propose a joint semantic and geometric cost volume to model the depth error.
arXiv Detail & Related papers (2022-03-16T11:54:10Z) - AutoShape: Real-Time Shape-Aware Monocular 3D Object Detection [15.244852122106634]
We propose an approach for incorporating the shape-aware 2D/3D constraints into the 3D detection framework.
Specifically, we employ the deep neural network to learn distinguished 2D keypoints in the 2D image domain.
For generating the ground truth of 2D/3D keypoints, an automatic model-fitting approach has been proposed.
arXiv Detail & Related papers (2021-08-25T08:50:06Z) - Aug3D-RPN: Improving Monocular 3D Object Detection by Synthetic Images
with Virtual Depth [64.29043589521308]
We propose a rendering module to augment the training data by synthesizing images with virtual-depths.
The rendering module takes as input the RGB image and its corresponding sparse depth image, outputs a variety of photo-realistic synthetic images.
Besides, we introduce an auxiliary module to improve the detection model by jointly optimizing it through a depth estimation task.
arXiv Detail & Related papers (2021-07-28T11:00:47Z) - MonoGRNet: A General Framework for Monocular 3D Object Detection [23.59839921644492]
We propose MonoGRNet for the amodal 3D object detection from a monocular image via geometric reasoning.
MonoGRNet decomposes the monocular 3D object detection task into four sub-tasks including 2D object detection, instance-level depth estimation, projected 3D center estimation and local corner regression.
Experiments are conducted on KITTI, Cityscapes and MS COCO datasets.
arXiv Detail & Related papers (2021-04-18T10:07:52Z) - M3DSSD: Monocular 3D Single Stage Object Detector [82.25793227026443]
We propose a Monocular 3D Single Stage object Detector (M3DSSD) with feature alignment and asymmetric non-local attention.
The proposed M3DSSD achieves significantly better performance than the monocular 3D object detection methods on the KITTI dataset.
arXiv Detail & Related papers (2021-03-24T13:09:11Z) - Virtual Normal: Enforcing Geometric Constraints for Accurate and Robust
Depth Prediction [87.08227378010874]
We show the importance of the high-order 3D geometric constraints for depth prediction.
By designing a loss term that enforces a simple geometric constraint, we significantly improve the accuracy and robustness of monocular depth estimation.
We show state-of-the-art results of learning metric depth on NYU Depth-V2 and KITTI.
arXiv Detail & Related papers (2021-03-07T00:08:21Z) - Monocular Differentiable Rendering for Self-Supervised 3D Object
Detection [21.825158925459732]
3D object detection from monocular images is an ill-posed problem due to the projective entanglement of depth and scale.
We present a novel self-supervised method for textured 3D shape reconstruction and pose estimation of rigid objects.
Our method predicts the 3D location and meshes of each object in an image using differentiable rendering and a self-supervised objective.
arXiv Detail & Related papers (2020-09-30T09:21:43Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.