Engineering, control and longitudinal readout of Floquet qubits
- URL: http://arxiv.org/abs/2108.11260v2
- Date: Tue, 21 Feb 2023 10:01:42 GMT
- Title: Engineering, control and longitudinal readout of Floquet qubits
- Authors: Anthony Gandon, Camille Le Calonnec, Ross Shillito, Alexandru
Petrescu, Alexandre Blais
- Abstract summary: Time-periodic Hamiltonians can be exploited to increase the dephasing time of qubits and to design protected one and two-qubit gates.
Here, we use the framework of many-mode Floquet theory to describe approaches to robustly control Floquet qubits in the presence of multiple drive tones.
Following the same approach, we introduce a longitudinal readout protocol to measure the Floquet qubit without the need of first adiabatically mapping back the Floquet states to the static qubit states.
- Score: 105.9098786966493
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Properties of time-periodic Hamiltonians can be exploited to increase the
dephasing time of qubits and to design protected one and two-qubit gates.
Recently, Huang et al. [Phys. Rev. Applied 15, 034065 (2021)] have shown that
time-dependent Floquet states offer a manifold of working points with dynamical
protection larger than the few usual static sweet spots. Here, we use the
framework of many-mode Floquet theory to describe approaches to robustly
control Floquet qubits in the presence of multiple drive tones. Following the
same approach, we introduce a longitudinal readout protocol to measure the
Floquet qubit without the need of first adiabatically mapping back the Floquet
states to the static qubit states, which results in a significant speedup in
the measurement time of the Floquet qubit. The analytical approach developed
here can be applied to any Hamiltonian involving a small number of distinct
drive tones, typically the study of standard parametric gates for qubits
outside of the rotating-wave approximation.
Related papers
- Simultaneous symmetry breaking in spontaneous Floquet states: Floquet-Nambu-Goldstone modes, Floquet thermodynamics, and the time operator [49.1574468325115]
We study simultaneous symmetry-breaking in a spontaneous Floquet state, focusing on the specific case of an atomic condensate.
We first describe the quantization of the Nambu-Goldstone (NG) modes for a stationary state simultaneously breaking several symmetries of the Hamiltonian.
We extend the formalism to Floquet states simultaneously breaking several symmetries, where Goldstone theorem translates into the emergence of Floquet-Nambu-Goldstone modes with zero quasi-energy.
arXiv Detail & Related papers (2024-02-16T16:06:08Z) - Engineering Floquet Dynamical Quantum Phase Transition [0.0]
Floquet dynamical quantum phase transitions (FDQPTs) are signified by recurrent nonanalytic behaviors of observables in time.
We introduce a quench-free and generic approach to engineer and control FDQPTs for both pure and mixed Floquet states.
arXiv Detail & Related papers (2022-06-07T09:41:21Z) - Following Floquet states in high-dimensional Hilbert spaces [0.0]
A strategy is proposed for following a Floquet state in response to small changes of a given system's Hamiltonian.
An iterative algorithm is established which enables one to compute individual Floquet states even for many-body systems with high-dimensional Hilbert spaces.
arXiv Detail & Related papers (2021-11-25T10:13:32Z) - The missing quantum number of the Floquet states [0.0]
We observe that the current standard method for calculating the Floquet eigenstates by the quasi-energy alone is incomplete and unstable, and pinpoint an overlooked quantum number, the average energy.
This new quantum number resolves many shortcomings of the Floquet method stemming from the quasi-energy degeneracy issues, particularly in the continuum limit.
Using the average energy quantum number we get properties similar to those of the static energy, including a unique lower-bounded ordering of the Floquet states, from which we define a ground state, and a variational method for calculating the Floquet states.
arXiv Detail & Related papers (2021-11-08T06:07:33Z) - Rotating Majorana Zero Modes in a disk geometry [75.34254292381189]
We study the manipulation of Majorana zero modes in a thin disk made from a $p$-wave superconductor.
We analyze the second-order topological corner modes that arise when an in-plane magnetic field is applied.
We show that oscillations persist even in the adiabatic phase because of a frequency independent coupling between zero modes and excited states.
arXiv Detail & Related papers (2021-09-08T11:18:50Z) - High-frequency expansions for time-periodic Lindblad generators [68.8204255655161]
Floquet engineering of isolated systems is often based on the concept of the effective time-independent Floquet Hamiltonian.
We show that the emerging non-Markovianity of the Floquet generator can entirely be attributed to the micromotion of the open driven system.
arXiv Detail & Related papers (2021-07-21T12:48:39Z) - Accurate methods for the analysis of strong-drive effects in parametric
gates [94.70553167084388]
We show how to efficiently extract gate parameters using exact numerics and a perturbative analytical approach.
We identify optimal regimes of operation for different types of gates including $i$SWAP, controlled-Z, and CNOT.
arXiv Detail & Related papers (2021-07-06T02:02:54Z) - Floquet dynamical quantum phase transitions in periodically quenched
systems [0.685316573653194]
Dynamical quantum phase transitions (DQPTs) are characterized by nonanalytic behaviors of physical observables as functions of time.
In this work, we explore Floquet DQPTs in a class of periodically quenched one-dimensional system with chiral symmetry.
arXiv Detail & Related papers (2020-10-31T06:19:31Z) - Engineering Dynamical Sweet Spots to Protect Qubits from 1/$f$ Noise [0.08388591755871733]
We develop a protocol for engineering dynamical sweet spots which reduce the susceptibility of a qubit to low-frequency noise.
Our work provides an intuitive tool to encode quantum information in robust, time-dependent states.
arXiv Detail & Related papers (2020-04-26T19:22:39Z) - Zitterbewegung and Klein-tunneling phenomena for transient quantum waves [77.34726150561087]
We show that the Zitterbewegung effect manifests itself as a series of quantum beats of the particle density in the long-time limit.
We also find a time-domain where the particle density of the point source is governed by the propagation of a main wavefront.
The relative positions of these wavefronts are used to investigate the time-delay of quantum waves in the Klein-tunneling regime.
arXiv Detail & Related papers (2020-03-09T21:27:02Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.