Accurate methods for the analysis of strong-drive effects in parametric
gates
- URL: http://arxiv.org/abs/2107.02343v1
- Date: Tue, 6 Jul 2021 02:02:54 GMT
- Title: Accurate methods for the analysis of strong-drive effects in parametric
gates
- Authors: Alexandru Petrescu and Camille Le Calonnec and Catherine Leroux and
Agustin Di Paolo and Pranav Mundada and Sara Sussman and Andrei Vrajitoarea
and Andrew A. Houck and Alexandre Blais
- Abstract summary: We show how to efficiently extract gate parameters using exact numerics and a perturbative analytical approach.
We identify optimal regimes of operation for different types of gates including $i$SWAP, controlled-Z, and CNOT.
- Score: 94.70553167084388
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The ability to perform fast, high-fidelity entangling gates is an important
requirement for a viable quantum processor. In practice, achieving fast gates
often comes with the penalty of strong-drive effects that are not captured by
the rotating-wave approximation. These effects can be analyzed in simulations
of the gate protocol, but those are computationally costly and often hide the
physics at play. Here, we show how to efficiently extract gate parameters by
directly solving a Floquet eigenproblem using exact numerics and a perturbative
analytical approach. As an example application of this toolkit, we study the
space of parametric gates generated between two fixed-frequency transmon qubits
connected by a parametrically driven coupler. Our analytical treatment, based
on time-dependent Schrieffer-Wolff perturbation theory, yields closed-form
expressions for gate frequencies and spurious interactions, and is valid for
strong drives. From these calculations, we identify optimal regimes of
operation for different types of gates including $i$SWAP, controlled-Z, and
CNOT. These analytical results are supplemented by numerical Floquet
computations from which we directly extract drive-dependent gate parameters.
This approach has a considerable computational advantage over full simulations
of time evolutions. More generally, our combined analytical and numerical
strategy allows us to characterize two-qubit gates involving parametrically
driven interactions, and can be applied to gate optimization and cross-talk
mitigation such as the cancellation of unwanted ZZ interactions in multi-qubit
architectures.
Related papers
- Charge-parity switching effects and optimisation of transmon-qubit design parameters [0.0]
We identify optimal ranges for qubit design parameters, grounded in comprehensive noise modeling.
A charge-parity switch can be the dominant quasiparticle-related error source of a two-qubit gate.
We present a performance metric for quantum circuit execution.
arXiv Detail & Related papers (2023-09-29T12:05:27Z) - Fast quantum gates based on Landau-Zener-St\"uckelberg-Majorana
transitions [0.0]
We derive analytical equations to determine the specific set of driving parameters for the implementation of single qubit and two qubit gates.
Our results focus on the study of the single qubit $X_fracpi2$, $Y_fracpi2$ and identity gates.
arXiv Detail & Related papers (2023-09-01T17:43:57Z) - Variational waveguide QED simulators [58.720142291102135]
Waveguide QED simulators are made by quantum emitters interacting with one-dimensional photonic band-gap materials.
Here, we demonstrate how these interactions can be a resource to develop more efficient variational quantum algorithms.
arXiv Detail & Related papers (2023-02-03T18:55:08Z) - Extensible circuit-QED architecture via amplitude- and
frequency-variable microwaves [52.77024349608834]
We introduce a circuit-QED architecture combining fixed-frequency qubits and microwave-driven couplers.
Drive parameters appear as tunable knobs enabling selective two-qubit coupling and coherent-error suppression.
arXiv Detail & Related papers (2022-04-17T22:49:56Z) - Effective non-local parity-dependent couplings in qubit chains [0.0]
We harness the simultaneous coupling of qubits on a chain and engineer a set of non-local parity-dependent quantum operations.
The resulting effective long-range couplings directly implement a parametrizable Trotter-step for Jordan-Wigner fermions.
We present numerical simulations of the gate operation in a superconducting quantum circuit architecture.
arXiv Detail & Related papers (2022-03-14T17:33:40Z) - Analytical and experimental study of center line miscalibrations in M\o
lmer-S\o rensen gates [51.93099889384597]
We study a systematic perturbative expansion in miscalibrated parameters of the Molmer-Sorensen entangling gate.
We compute the gate evolution operator which allows us to obtain relevant key properties.
We verify the predictions from our model by benchmarking them against measurements in a trapped-ion quantum processor.
arXiv Detail & Related papers (2021-12-10T10:56:16Z) - Composably secure data processing for Gaussian-modulated continuous
variable quantum key distribution [58.720142291102135]
Continuous-variable quantum key distribution (QKD) employs the quadratures of a bosonic mode to establish a secret key between two remote parties.
We consider a protocol with homodyne detection in the general setting of composable finite-size security.
In particular, we analyze the high signal-to-noise regime which requires the use of high-rate (non-binary) low-density parity check codes.
arXiv Detail & Related papers (2021-03-30T18:02:55Z) - Analytic Filter Function Derivatives for Quantum Optimal Control [0.0]
We focus on the filter function formalism, which allows the computation of gate fidelities in the presence of auto-correlated noise.
We present analytically derived filter function gradients with respect to control pulse amplitudes, and analyze the computational complexity of our results.
arXiv Detail & Related papers (2021-03-16T15:13:58Z) - Fast and differentiable simulation of driven quantum systems [58.720142291102135]
We introduce a semi-analytic method based on the Dyson expansion that allows us to time-evolve driven quantum systems much faster than standard numerical methods.
We show results of the optimization of a two-qubit gate using transmon qubits in the circuit QED architecture.
arXiv Detail & Related papers (2020-12-16T21:43:38Z) - Error analysis in suppression of unwanted qubit interactions for a
parametric gate in a tunable superconducting circuit [0.0]
We experimentally demonstrate a parametric iSWAP gate in a superconducting circuit based on a tunable coupler.
We implement the twoqubit iSWAP gate by applying a fast-flux bias modulation pulse on the coupler to turn on parametric exchange interaction between computational qubits.
arXiv Detail & Related papers (2020-03-19T02:26:17Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.