Deep few-shot learning for bi-temporal building change detection
- URL: http://arxiv.org/abs/2108.11262v1
- Date: Wed, 25 Aug 2021 14:38:21 GMT
- Title: Deep few-shot learning for bi-temporal building change detection
- Authors: Mehdi Khoshboresh-Masouleh, Reza Shah-Hosseini
- Abstract summary: A new deep few-shot learning method is proposed for building change detection using Monte Carlo dropout and remote sensing observations.
The setup is based on a small dataset, including bitemporal optical images labeled for building change detection.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In real-world applications (e.g., change detection), annotating images is
very expensive. To build effective deep learning models in these applications,
deep few-shot learning methods have been developed and prove to be a robust
approach in small training data. The analysis of building change detection from
high spatial resolution remote sensing observations is important research in
photogrammetry, computer vision, and remote sensing nowadays, which can be
widely used in a variety of real-world applications, such as map updating. As
manual high resolution image interpretation is expensive and time-consuming,
building change detection methods are of high interest. The interest in
developing building change detection approaches from optical remote sensing
images is rapidly increasing due to larger coverages, and lower costs of
optical images. In this study, we focus on building change detection analysis
on a small set of building change from different regions that sit in several
cities. In this paper, a new deep few-shot learning method is proposed for
building change detection using Monte Carlo dropout and remote sensing
observations. The setup is based on a small dataset, including bitemporal
optical images labeled for building change detection.
Related papers
- Novel Change Detection Framework in Remote Sensing Imagery Using Diffusion Models and Structural Similarity Index (SSIM) [0.0]
Change detection is a crucial task in remote sensing, enabling the monitoring of environmental changes, urban growth, and disaster impact.
Recent advancements in machine learning, particularly generative models like diffusion models, offer new opportunities for enhancing change detection accuracy.
We propose a novel change detection framework that combines the strengths of Stable Diffusion models with the Structural Similarity Index (SSIM) to create robust and interpretable change maps.
arXiv Detail & Related papers (2024-08-20T07:54:08Z) - BD-MSA: Body decouple VHR Remote Sensing Image Change Detection method
guided by multi-scale feature information aggregation [4.659935767219465]
The purpose of remote sensing image change detection (RSCD) is to detect differences between bi-temporal images taken at the same place.
Deep learning has been extensively used to RSCD tasks, yielding significant results in terms of result recognition.
arXiv Detail & Related papers (2024-01-09T02:53:06Z) - Innovative Horizons in Aerial Imagery: LSKNet Meets DiffusionDet for
Advanced Object Detection [55.2480439325792]
We present an in-depth evaluation of an object detection model that integrates the LSKNet backbone with the DiffusionDet head.
The proposed model achieves a mean average precision (MAP) of approximately 45.7%, which is a significant improvement.
This advancement underscores the effectiveness of the proposed modifications and sets a new benchmark in aerial image analysis.
arXiv Detail & Related papers (2023-11-21T19:49:13Z) - Change Detection Methods for Remote Sensing in the Last Decade: A
Comprehensive Review [45.78958623050146]
Change detection is an essential and widely utilized task in remote sensing.
It aims to detect and analyze changes occurring in the same geographical area over time.
Deep learning has emerged as a powerful tool for feature extraction and addressing these challenges.
arXiv Detail & Related papers (2023-05-09T23:52:37Z) - Learning Transformations To Reduce the Geometric Shift in Object
Detection [60.20931827772482]
We tackle geometric shifts emerging from variations in the image capture process.
We introduce a self-training approach that learns a set of geometric transformations to minimize these shifts.
We evaluate our method on two different shifts, i.e., a camera's field of view (FoV) change and a viewpoint change.
arXiv Detail & Related papers (2023-01-13T11:55:30Z) - Simple Open-Vocabulary Object Detection with Vision Transformers [51.57562920090721]
We propose a strong recipe for transferring image-text models to open-vocabulary object detection.
We use a standard Vision Transformer architecture with minimal modifications, contrastive image-text pre-training, and end-to-end detection fine-tuning.
We provide the adaptation strategies and regularizations needed to attain very strong performance on zero-shot text-conditioned and one-shot image-conditioned object detection.
arXiv Detail & Related papers (2022-05-12T17:20:36Z) - Infrared Small-Dim Target Detection with Transformer under Complex
Backgrounds [155.388487263872]
We propose a new infrared small-dim target detection method with the transformer.
We adopt the self-attention mechanism of the transformer to learn the interaction information of image features in a larger range.
We also design a feature enhancement module to learn more features of small-dim targets.
arXiv Detail & Related papers (2021-09-29T12:23:41Z) - City-scale Scene Change Detection using Point Clouds [71.73273007900717]
We propose a method for detecting structural changes in a city using images captured from mounted cameras over two different times.
A direct comparison of the two point clouds for change detection is not ideal due to inaccurate geo-location information.
To circumvent this problem, we propose a deep learning-based non-rigid registration on the point clouds.
Experiments show that our method is able to detect scene changes effectively, even in the presence of viewpoint and illumination differences.
arXiv Detail & Related papers (2021-03-26T08:04:13Z) - Self-supervised Multisensor Change Detection [14.191073951237772]
We revisit multisensor analysis in context of self-supervised change detection in bi-temporal satellite images.
Recent development of self-supervised learning methods has shown that some of them can even work with only few images.
Motivated by this, in this work we propose a method for multi-sensor change detection using only the unlabeled target bi-temporal images.
arXiv Detail & Related papers (2021-02-12T12:31:10Z) - Unsupervised Change Detection in Satellite Images with Generative
Adversarial Network [20.81970476609318]
We propose a novel change detection framework utilizing a special neural network architecture -- Generative Adversarial Network (GAN) to generate better coregistered images.
The optimized GAN model would produce better coregistered images where changes can be easily spotted and then the change map can be presented through a comparison strategy.
arXiv Detail & Related papers (2020-09-08T10:26:04Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.