Novel Change Detection Framework in Remote Sensing Imagery Using Diffusion Models and Structural Similarity Index (SSIM)
- URL: http://arxiv.org/abs/2408.10619v1
- Date: Tue, 20 Aug 2024 07:54:08 GMT
- Title: Novel Change Detection Framework in Remote Sensing Imagery Using Diffusion Models and Structural Similarity Index (SSIM)
- Authors: Andrew Kiruluta, Eric Lundy, Andreas Lemos,
- Abstract summary: Change detection is a crucial task in remote sensing, enabling the monitoring of environmental changes, urban growth, and disaster impact.
Recent advancements in machine learning, particularly generative models like diffusion models, offer new opportunities for enhancing change detection accuracy.
We propose a novel change detection framework that combines the strengths of Stable Diffusion models with the Structural Similarity Index (SSIM) to create robust and interpretable change maps.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Change detection is a crucial task in remote sensing, enabling the monitoring of environmental changes, urban growth, and disaster impact. Conventional change detection techniques, such as image differencing and ratioing, often struggle with noise and fail to capture complex variations in imagery. Recent advancements in machine learning, particularly generative models like diffusion models, offer new opportunities for enhancing change detection accuracy. In this paper, we propose a novel change detection framework that combines the strengths of Stable Diffusion models with the Structural Similarity Index (SSIM) to create robust and interpretable change maps. Our approach, named Diffusion Based Change Detector, is evaluated on both synthetic and real-world remote sensing datasets and compared with state-of-the-art methods. The results demonstrate that our method significantly outperforms traditional differencing techniques and recent deep learning-based methods, particularly in scenarios with complex changes and noise.
Related papers
- Integrated Dynamic Phenological Feature for Remote Sensing Image Land Cover Change Detection [5.109855690325439]
We introduce the InPhea model, which integrates phenological features into a remote sensing image CD framework.
A constrainer with four constraint modules and a multi-stage contrastive learning approach is employed to aid in the model's understanding of phenological characteristics.
Experiments on the HRSCD, SECD, and PSCD-Wuhan datasets reveal that InPhea outperforms other models.
arXiv Detail & Related papers (2024-08-08T01:07:28Z) - DeepFidelity: Perceptual Forgery Fidelity Assessment for Deepfake
Detection [67.3143177137102]
Deepfake detection refers to detecting artificially generated or edited faces in images or videos.
We propose a novel Deepfake detection framework named DeepFidelity to adaptively distinguish real and fake faces.
arXiv Detail & Related papers (2023-12-07T07:19:45Z) - Multitemporal SAR images change detection and visualization using
RABASAR and simplified GLR [5.601249128545687]
We propose a simplified generalized likelihood ratio ($S_GLR$) method assuming that corresponding temporal pixels have the same equivalent number of looks (ENL)
Thanks to the denoised data provided by a ratio-based multitemporal SAR image denoising method (RABASAR), we successfully applied this similarity test approach to compute the change areas.
A new change magnitude index method and an improved spectral clustering-based change classification method are also developed.
arXiv Detail & Related papers (2023-07-15T22:11:34Z) - Learning Transformations To Reduce the Geometric Shift in Object
Detection [60.20931827772482]
We tackle geometric shifts emerging from variations in the image capture process.
We introduce a self-training approach that learns a set of geometric transformations to minimize these shifts.
We evaluate our method on two different shifts, i.e., a camera's field of view (FoV) change and a viewpoint change.
arXiv Detail & Related papers (2023-01-13T11:55:30Z) - Scene Change Detection Using Multiscale Cascade Residual Convolutional
Neural Networks [0.0]
Scene change detection is an image processing problem related to partitioning pixels of a digital image into foreground and background regions.
In this work, we propose a novel Multiscale Residual Processing Module, with a Convolutional Neural Network that integrates a Residual Processing Module.
Experiments conducted on two different datasets support the overall effectiveness of the proposed approach, achieving an average overall effectiveness of $boldsymbol0.9622$ and $boldsymbol0.9664$ over Change Detection 2014 and PetrobrasROUTES datasets respectively.
arXiv Detail & Related papers (2022-12-20T16:48:51Z) - A Hierarchical Transformation-Discriminating Generative Model for Few
Shot Anomaly Detection [93.38607559281601]
We devise a hierarchical generative model that captures the multi-scale patch distribution of each training image.
The anomaly score is obtained by aggregating the patch-based votes of the correct transformation across scales and image regions.
arXiv Detail & Related papers (2021-04-29T17:49:48Z) - M2TR: Multi-modal Multi-scale Transformers for Deepfake Detection [74.19291916812921]
forged images generated by Deepfake techniques pose a serious threat to the trustworthiness of digital information.
In this paper, we aim to capture the subtle manipulation artifacts at different scales for Deepfake detection.
We introduce a high-quality Deepfake dataset, SR-DF, which consists of 4,000 DeepFake videos generated by state-of-the-art face swapping and facial reenactment methods.
arXiv Detail & Related papers (2021-04-20T05:43:44Z) - Firearm Detection via Convolutional Neural Networks: Comparing a
Semantic Segmentation Model Against End-to-End Solutions [68.8204255655161]
Threat detection of weapons and aggressive behavior from live video can be used for rapid detection and prevention of potentially deadly incidents.
One way for achieving this is through the use of artificial intelligence and, in particular, machine learning for image analysis.
We compare a traditional monolithic end-to-end deep learning model and a previously proposed model based on an ensemble of simpler neural networks detecting fire-weapons via semantic segmentation.
arXiv Detail & Related papers (2020-12-17T15:19:29Z) - Semantic Change Detection with Asymmetric Siamese Networks [71.28665116793138]
Given two aerial images, semantic change detection aims to locate the land-cover variations and identify their change types with pixel-wise boundaries.
This problem is vital in many earth vision related tasks, such as precise urban planning and natural resource management.
We present an asymmetric siamese network (ASN) to locate and identify semantic changes through feature pairs obtained from modules of widely different structures.
arXiv Detail & Related papers (2020-10-12T13:26:30Z) - Unsupervised Change Detection in Satellite Images with Generative
Adversarial Network [20.81970476609318]
We propose a novel change detection framework utilizing a special neural network architecture -- Generative Adversarial Network (GAN) to generate better coregistered images.
The optimized GAN model would produce better coregistered images where changes can be easily spotted and then the change map can be presented through a comparison strategy.
arXiv Detail & Related papers (2020-09-08T10:26:04Z) - DASNet: Dual attentive fully convolutional siamese networks for change
detection of high resolution satellite images [17.839181739760676]
The research objective is to identity the change information of interest and filter out the irrelevant change information as interference factors.
Recently, the rise of deep learning has provided new tools for change detection, which have yielded impressive results.
We propose a new method, namely, dual attentive fully convolutional Siamese networks (DASNet) for change detection in high-resolution images.
arXiv Detail & Related papers (2020-03-07T16:57:10Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.