Technological Approaches to Detecting Online Disinformation and
Manipulation
- URL: http://arxiv.org/abs/2108.11669v1
- Date: Thu, 26 Aug 2021 09:28:50 GMT
- Title: Technological Approaches to Detecting Online Disinformation and
Manipulation
- Authors: Ale\v{s} Hor\'ak, V\'it Baisa, Ond\v{r}ej Herman
- Abstract summary: The move of propaganda and disinformation to the online environment is possible thanks to the fact that within the last decade, digital information channels radically increased in popularity as a news source.
In this chapter, an overview of computer-supported approaches to detecting disinformation and manipulative techniques based on several criteria is presented.
- Score: 0.0
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: The move of propaganda and disinformation to the online environment is
possible thanks to the fact that within the last decade, digital information
channels radically increased in popularity as a news source. The main advantage
of such media lies in the speed of information creation and dissemination.
This, on the other hand, inevitably adds pressure, accelerating editorial work,
fact-checking, and the scrutiny of source credibility. In this chapter, an
overview of computer-supported approaches to detecting disinformation and
manipulative techniques based on several criteria is presented. We concentrate
on the technical aspects of automatic methods which support fact-checking,
topic identification, text style analysis, or message filtering on social media
channels. Most of the techniques employ artificial intelligence and machine
learning with feature extraction combining available information resources. The
following text firstly specifies the tasks related to computer detection of
manipulation and disinformation spreading. The second section presents concrete
methods of solving the tasks of the analysis, and the third sections enlists
current verification and benchmarking datasets published and used in this area
for evaluation and comparison.
Related papers
- SyROCCo: Enhancing Systematic Reviews using Machine Learning [6.805429133535976]
This paper explores the use of machine learning techniques to help navigate the systematic review process.
The application of ML techniques to subsequent stages of a review, such as data extraction and evidence mapping, is in its infancy.
arXiv Detail & Related papers (2024-06-24T11:04:43Z) - Exposing and Explaining Fake News On-the-Fly [4.278181795494584]
This work contributes with an explainable and online classification method to recognize fake news in real-time.
The proposed method combines both unsupervised and supervised Machine Learning approaches with online created lexica.
The performance of the proposed solution has been validated with real data sets from Twitter and the results attain 80 % accuracy and macro F-measure.
arXiv Detail & Related papers (2024-05-03T14:49:04Z) - ManiTweet: A New Benchmark for Identifying Manipulation of News on Social Media [74.93847489218008]
We present a novel task, identifying manipulation of news on social media, which aims to detect manipulation in social media posts and identify manipulated or inserted information.
To study this task, we have proposed a data collection schema and curated a dataset called ManiTweet, consisting of 3.6K pairs of tweets and corresponding articles.
Our analysis demonstrates that this task is highly challenging, with large language models (LLMs) yielding unsatisfactory performance.
arXiv Detail & Related papers (2023-05-23T16:40:07Z) - Fighting Malicious Media Data: A Survey on Tampering Detection and
Deepfake Detection [115.83992775004043]
Recent advances in deep learning, particularly deep generative models, open the doors for producing perceptually convincing images and videos at a low cost.
This paper provides a comprehensive review of the current media tampering detection approaches, and discusses the challenges and trends in this field for future research.
arXiv Detail & Related papers (2022-12-12T02:54:08Z) - Panning for gold: Lessons learned from the platform-agnostic automated
detection of political content in textual data [48.7576911714538]
We discuss how these techniques can be used to detect political content across different platforms.
We compare the performance of three groups of detection techniques relying on dictionaries, supervised machine learning, or neural networks.
Our results show the limited impact of preprocessing on model performance, with the best results for less noisy data being achieved by neural network- and machine-learning-based models.
arXiv Detail & Related papers (2022-07-01T15:23:23Z) - Human-in-the-Loop Disinformation Detection: Stance, Sentiment, or
Something Else? [93.91375268580806]
Both politics and pandemics have recently provided ample motivation for the development of machine learning-enabled disinformation (a.k.a. fake news) detection algorithms.
Existing literature has focused primarily on the fully-automated case, but the resulting techniques cannot reliably detect disinformation on the varied topics, sources, and time scales required for military applications.
By leveraging an already-available analyst as a human-in-the-loop, canonical machine learning techniques of sentiment analysis, aspect-based sentiment analysis, and stance detection become plausible methods to use for a partially-automated disinformation detection system.
arXiv Detail & Related papers (2021-11-09T13:30:34Z) - Interpretable Propaganda Detection in News Articles [30.192497301608164]
We propose to detect and to show the use of deception techniques as a way to offer interpretability.
Our interpretable features can be easily combined with pre-trained language models, yielding state-of-the-art results.
arXiv Detail & Related papers (2021-08-29T09:57:01Z) - Cross-Domain Learning for Classifying Propaganda in Online Contents [67.10699378370752]
We present an approach to leverage cross-domain learning, based on labeled documents and sentences from news and tweets, as well as political speeches with a clear difference in their degrees of being propagandistic.
Our experiments demonstrate the usefulness of this approach, and identify difficulties and limitations in various configurations of sources and targets for the transfer step.
arXiv Detail & Related papers (2020-11-13T10:19:13Z) - Extracting actionable information from microtexts [0.0]
This dissertation proposes a semi-automatic method for extracting actionable information.
We show that predicting time to event is possible for both in-domain and cross-domain scenarios.
We propose a method to integrate the machine learning based relevant information classification method with a rule-based information classification technique to classify microtexts.
arXiv Detail & Related papers (2020-08-01T21:22:53Z) - Mining Disinformation and Fake News: Concepts, Methods, and Recent
Advancements [55.33496599723126]
disinformation including fake news has become a global phenomenon due to its explosive growth.
Despite the recent progress in detecting disinformation and fake news, it is still non-trivial due to its complexity, diversity, multi-modality, and costs of fact-checking or annotation.
arXiv Detail & Related papers (2020-01-02T21:01:02Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.