論文の概要: State of the Art: Image Hashing
- arxiv url: http://arxiv.org/abs/2108.11794v1
- Date: Thu, 26 Aug 2021 13:53:30 GMT
- ステータス: 処理完了
- システム内更新日: 2021-08-27 13:59:32.755418
- Title: State of the Art: Image Hashing
- Title(参考訳): State of the Art: Image Hashing
- Authors: Rubel Biswas and Pablo Blanco-Medina
- Abstract要約: 知覚的画像ハッシュ法は、画像検索、重複画像やほぼ重複画像の発見、大規模画像コンテンツからの類似画像の発見など、様々な目的に応用されることが多い。
画像ハッシュ技術の主な課題は、視覚的に同一である画像において、同じまたは類似したハッシュを生成する、ロバストな特徴抽出である。
本稿では,従来の知覚ハッシュ法と深層学習に基づく知覚ハッシュ法について概説する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Perceptual image hashing methods are often applied in various objectives,
such as image retrieval, finding duplicate or near-duplicate images, and
finding similar images from large-scale image content. The main challenge in
image hashing techniques is robust feature extraction, which generates the same
or similar hashes in images that are visually identical. In this article, we
present a short review of the state-of-the-art traditional perceptual hashing
and deep learning-based perceptual hashing methods, identifying the best
approaches.
- Abstract(参考訳): 知覚的画像ハッシュ法は、画像検索、重複画像やほぼ重複画像の発見、大規模画像コンテンツからの類似画像の発見など、様々な目的に応用されることが多い。
画像ハッシュ技術の主な課題はロバストな特徴抽出であり、視覚的に同一の画像で同じまたは類似のハッシュを生成する。
本稿では,従来の知覚ハッシュ法と深層学習に基づく知覚ハッシュ法について概説する。
関連論文リスト
- Detecting Generated Images by Real Images Only [64.12501227493765]
既存の画像検出手法は、生成画像中の視覚的アーティファクトを検出したり、大規模なトレーニングによって、実画像と生成画像の両方から識別的特徴を学習する。
本稿では,新たな視点から生成した画像検出問題にアプローチする。
実画像の共通性を見つけ、特徴空間内の密接な部分空間にマッピングすることで、生成した画像は生成モデルに関係なくサブ空間の外側に投影される。
論文 参考訳(メタデータ) (2023-11-02T03:09:37Z) - Pattern Spotting and Image Retrieval in Historical Documents using Deep
Hashing [60.67014034968582]
本稿では,歴史文書のデジタルコレクションにおける画像検索とパターンスポッティングのためのディープラーニング手法を提案する。
ディープラーニングモデルは、実数値またはバイナリコード表現を提供する2つの異なるバリエーションを考慮して、特徴抽出に使用される。
また,提案手法により検索時間を最大200倍に短縮し,関連する作業と比較してストレージコストを最大6,000倍に削減する。
論文 参考訳(メタデータ) (2022-08-04T01:39:37Z) - Asymmetric Hash Code Learning for Remote Sensing Image Retrieval [22.91678927865952]
リモートセンシング画像検索のための非対称ハッシュ符号学習(AHCL)という新しい深層ハッシュ法を提案する。
AHCLは、クエリとデータベースイメージのハッシュコードを非対称に生成する。
3つの公開データセットに対する実験結果から,提案手法は精度と効率の点で対称法より優れていることが示された。
論文 参考訳(メタデータ) (2022-01-15T07:00:38Z) - Contextual Similarity Aggregation with Self-attention for Visual
Re-ranking [96.55393026011811]
本稿では,自己注意を伴う文脈的類似性集約による視覚的再ランク付け手法を提案する。
提案手法の汎用性と有効性を示すため,4つのベンチマークデータセットの総合的な実験を行った。
論文 参考訳(メタデータ) (2021-10-26T06:20:31Z) - Self-supervised Product Quantization for Deep Unsupervised Image
Retrieval [21.99902461562925]
改良されたディープラーニングベースのハッシュとベクトル量子化は、高速で大規模な画像検索システムを実現する。
本稿では,SPQ (Self-supervised Product Quantization) ネットワークと呼ばれる,ラベルフリーで,自己教師型で訓練された画像検索手法を提案する。
提案手法は,画像内容を分析して記述的特徴を抽出し,正確な検索のための画像表現の理解を可能にする。
論文 参考訳(メタデータ) (2021-09-06T05:02:34Z) - Similarity Guided Deep Face Image Retrieval [21.99902461562925]
類似性誘導ハッシュ法(SGH)は、自己とペアの相似性を同時に考慮する。
SGHは大規模な顔画像データセット上で最先端の検索性能を提供する。
論文 参考訳(メタデータ) (2021-07-11T11:32:04Z) - Exploiting Web Images for Fine-Grained Visual Recognition by Eliminating
Noisy Samples and Utilizing Hard Ones [60.07027312916081]
トレーニング中に実世界のWeb画像から無関係なサンプルを除去するための新しいアプローチを提案します。
私達のアプローチはよりよい性能を達成するために無関係な騒々しいWebイメージおよび堅い例の有害な影響を緩和できます。
論文 参考訳(メタデータ) (2021-01-23T03:58:10Z) - Adversarial collision attacks on image hashing functions [9.391375268580806]
画像を修正して無関係なハッシュを生成することができ、極小摂動によって正確なハッシュ衝突を発生させることができることを示す。
白いボックス設定では、これらの衝突は、ほぼすべてのイメージペアとハッシュタイプに複製できる。
勾配に基づく画像ハッシュ攻撃に対する潜在的な軽減策をいくつか提案する。
論文 参考訳(メタデータ) (2020-11-18T18:59:02Z) - Deep Reinforcement Learning with Label Embedding Reward for Supervised
Image Hashing [85.84690941656528]
深層型ハッシュのための新しい意思決定手法を提案する。
我々はBose-Chaudhuri-Hocquenghem符号で定義された新しいラベル埋め込み報酬を用いて、深いQ-ネットワークを学ぶ。
我々の手法は、様々なコード長で最先端の教師付きハッシュ法より優れています。
論文 参考訳(メタデータ) (2020-08-10T09:17:20Z) - Dual-level Semantic Transfer Deep Hashing for Efficient Social Image
Retrieval [35.78137004253608]
ソーシャルネットワークは膨大な量のユーザ共有画像を保存し、配布する。
ディープハッシュは、大規模社会画像検索をサポートする効率的なインデックス化技術である。
既存の手法は、大量のディープニューラルネットワークパラメータを最適化する際に、深刻なセマンティックな不足に悩まされる。
本稿では,DSTDH(Dual-level Semantic Transfer Deep Hashing)法を提案する。
論文 参考訳(メタデータ) (2020-06-10T01:03:09Z) - A Survey on Deep Hashing Methods [52.326472103233854]
最寄りの検索は、データベースからクエリまでの距離が最小のサンプルを取得することを目的としている。
ディープラーニングの発展により、ディープハッシュ法は従来の方法よりも多くの利点を示す。
深い教師付きハッシュは、ペアワイズ法、ランキングベースの方法、ポイントワイズ法、量子化に分類される。
深い教師なしハッシュは、類似性再構築に基づく方法、擬似ラベルに基づく方法、予測自由な自己教師あり学習に基づく方法に分類される。
論文 参考訳(メタデータ) (2020-03-04T08:25:15Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。