DeepGene Transformer: Transformer for the gene expression-based classification of cancer subtypes
- URL: http://arxiv.org/abs/2108.11833v4
- Date: Wed, 10 Jul 2024 12:16:00 GMT
- Title: DeepGene Transformer: Transformer for the gene expression-based classification of cancer subtypes
- Authors: Anwar Khan, Boreom Lee,
- Abstract summary: Cancer and its subtypes constitute approximately 30% of all causes of death globally.
DeepGene Transformer is proposed which addresses the complexity of high-dimensional gene expression with a multi-head self-attention module.
- Score: 5.179504118679301
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Cancer and its subtypes constitute approximately 30% of all causes of death globally and display a wide range of heterogeneity in terms of clinical and molecular responses to therapy. Molecular subtyping has enabled the use of precision medicine to overcome these challenges and provide significant biological insights to predict prognosis and improve clinical decision-making. Over the past decade, conventional machine learning (ML) and deep learning (DL) algorithms have been widely espoused for the classification of cancer subtypes from gene expression datasets. However, these methods are potentially biased toward the identification of cancer biomarkers. Hence, an end-to-end deep learning approach, DeepGene Transformer, is proposed which addresses the complexity of high-dimensional gene expression with a multi-head self-attention module by identifying relevant biomarkers across multiple cancer subtypes without requiring feature selection as a pre-requisite for the current classification algorithms. Comparative analysis reveals that the proposed DeepGene Transformer outperformed the commonly used traditional and state-of-the-art classification algorithms and can be considered an efficient approach for classifying cancer and its subtypes, indicating that any improvement in deep learning models in computational biologists can be reflected well in this domain as well.
Related papers
- Precision Cancer Classification and Biomarker Identification from mRNA Gene Expression via Dimensionality Reduction and Explainable AI [0.9423257767158634]
This research presents a comprehensive pipeline designed to accurately identify 33 distinct cancer types and their corresponding gene sets.
It incorporates a combination of normalization and feature selection techniques to reduce dataset dimensionality effectively.
We leverage Explainable AI to elucidate the biological significance of the identified cancer-specific genes.
arXiv Detail & Related papers (2024-10-08T18:56:31Z) - Single-Cell Deep Clustering Method Assisted by Exogenous Gene
Information: A Novel Approach to Identifying Cell Types [50.55583697209676]
We develop an attention-enhanced graph autoencoder, which is designed to efficiently capture the topological features between cells.
During the clustering process, we integrated both sets of information and reconstructed the features of both cells and genes to generate a discriminative representation.
This research offers enhanced insights into the characteristics and distribution of cells, thereby laying the groundwork for early diagnosis and treatment of diseases.
arXiv Detail & Related papers (2023-11-28T09:14:55Z) - Machine Learning Methods for Cancer Classification Using Gene Expression
Data: A Review [77.34726150561087]
Cancer is the second major cause of death after cardiovascular diseases.
Gene expression can play a fundamental role in the early detection of cancer.
This study reviews recent progress in gene expression analysis for cancer classification using machine learning methods.
arXiv Detail & Related papers (2023-01-28T15:03:03Z) - Subtype-Former: a deep learning approach for cancer subtype discovery
with multi-omics data [17.36619699329539]
This study proposed Subtype-Former, a deep learning method based on Transformer and Block.
We found that Subtype-Former can perform better on the benchmark datasets of more than 5000 tumors based on the survival analysis.
We identified 50 essential biomarkers, which can be used to study targeted cancer drugs.
arXiv Detail & Related papers (2022-07-28T08:15:06Z) - Automated Cancer Subtyping via Vector Quantization Mutual Information
Maximization [10.191396978971168]
We propose a novel clustering method for exploiting genetic expression profiles and distinguishing subtypes in an unsupervised manner.
Our method can refine existing controversial labels, and, by further medical analysis, this refinement is proven to have a high correlation with cancer survival rates.
arXiv Detail & Related papers (2022-06-22T01:55:08Z) - Triplet Contrastive Learning for Brain Tumor Classification [99.07846518148494]
We present a novel approach of directly learning deep embeddings for brain tumor types, which can be used for downstream tasks such as classification.
We evaluate our method on an extensive brain tumor dataset which consists of 27 different tumor classes, out of which 13 are defined as rare.
arXiv Detail & Related papers (2021-08-08T11:26:34Z) - Cancer Gene Profiling through Unsupervised Discovery [49.28556294619424]
We introduce a novel, automatic and unsupervised framework to discover low-dimensional gene biomarkers.
Our method is based on the LP-Stability algorithm, a high dimensional center-based unsupervised clustering algorithm.
Our signature reports promising results on distinguishing immune inflammatory and immune desert tumors.
arXiv Detail & Related papers (2021-02-11T09:04:45Z) - G-MIND: An End-to-End Multimodal Imaging-Genetics Framework for
Biomarker Identification and Disease Classification [49.53651166356737]
We propose a novel deep neural network architecture to integrate imaging and genetics data, as guided by diagnosis, that provides interpretable biomarkers.
We have evaluated our model on a population study of schizophrenia that includes two functional MRI (fMRI) paradigms and Single Nucleotide Polymorphism (SNP) data.
arXiv Detail & Related papers (2021-01-27T19:28:04Z) - Topological Data Analysis of copy number alterations in cancer [70.85487611525896]
We explore the potential to capture information contained in cancer genomic information using a novel topology-based approach.
We find that this technique has the potential to extract meaningful low-dimensional representations in cancer somatic genetic data.
arXiv Detail & Related papers (2020-11-22T17:31:23Z) - The scalable Birth-Death MCMC Algorithm for Mixed Graphical Model
Learning with Application to Genomic Data Integration [0.0]
We propose a novel mixed graphical model approach to analyze multi-omic data of different types.
We find that our method is superior in terms of both computational efficiency and the accuracy of the model selection results.
arXiv Detail & Related papers (2020-05-08T16:34:58Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.