Adaptive Deep Learning for Multiclass Breast Cancer Classification via Misprediction Risk Analysis
- URL: http://arxiv.org/abs/2503.12778v1
- Date: Mon, 17 Mar 2025 03:25:28 GMT
- Title: Adaptive Deep Learning for Multiclass Breast Cancer Classification via Misprediction Risk Analysis
- Authors: Gul Sheeraz, Qun Chen, Liu Feiyu, Zhou Fengjin MD,
- Abstract summary: Early detection is crucial for improving patient outcomes.<n>Computer-aided diagnostic approaches have significantly enhanced breast cancer detection.<n>However, these methods face challenges in multiclass classification, leading to frequent mispredictions.
- Score: 0.8028869343053783
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Breast cancer remains one of the leading causes of cancer-related deaths worldwide. Early detection is crucial for improving patient outcomes, yet the diagnostic process is often complex and prone to inconsistencies among pathologists. Computer-aided diagnostic approaches have significantly enhanced breast cancer detection, particularly in binary classification (benign vs. malignant). However, these methods face challenges in multiclass classification, leading to frequent mispredictions. In this work, we propose a novel adaptive learning approach for multiclass breast cancer classification using H&E-stained histopathology images. First, we introduce a misprediction risk analysis framework that quantifies and ranks the likelihood of an image being mislabeled by a classifier. This framework leverages an interpretable risk model that requires only a small number of labeled samples for training. Next, we present an adaptive learning strategy that fine-tunes classifiers based on the specific characteristics of a given dataset. This approach minimizes misprediction risk, allowing the classifier to adapt effectively to the target workload. We evaluate our proposed solutions on real benchmark datasets, demonstrating that our risk analysis framework more accurately identifies mispredictions compared to existing methods. Furthermore, our adaptive learning approach significantly improves the performance of state-of-the-art deep neural network classifiers.
Related papers
- Revisiting Invariant Learning for Out-of-Domain Generalization on Multi-Site Mammogram Datasets [8.080495390226115]
This paper reassesses the application of invariant learning for breast cancer risk estimation based on mammograms.<n> Evaluation metrics include accuracy, average precision, and area under the curve.<n>This research examines the advantages, limitations, and challenges of invariant learning for mammogram classification.
arXiv Detail & Related papers (2025-03-09T20:28:04Z) - Mitigating annotation shift in cancer classification using single image generative models [1.1864334278373239]
This study simulates, analyses and mitigates annotation shifts in cancer classification in the breast mammography domain.
We propose a training data augmentation approach based on single-image generative models for the affected class.
Our study offers key insights into annotation shift in deep learning breast cancer classification and explores the potential of single-image generative models to overcome domain shift challenges.
arXiv Detail & Related papers (2024-05-30T07:02:50Z) - Multi-task Explainable Skin Lesion Classification [54.76511683427566]
We propose a few-shot-based approach for skin lesions that generalizes well with few labelled data.
The proposed approach comprises a fusion of a segmentation network that acts as an attention module and classification network.
arXiv Detail & Related papers (2023-10-11T05:49:47Z) - Pre-screening breast cancer with machine learning and deep learning [0.0]
Deep learning can be used for pre-screening cancer by analyzing demographic and anthropometric information of patients.
Deep learning model with an input-layer architecture that is fine-tuned using feature selection can effectively distinguish between patients with and without cancer.
These findings suggest that deep learning algorithms applied to cancer pre-screening offer a radiation-free, non-invasive, and affordable complement to screening methods based on imagery.
arXiv Detail & Related papers (2023-02-05T15:27:50Z) - Gene selection from microarray expression data: A Multi-objective PSO
with adaptive K-nearest neighborhood [0.0]
This paper deals with the classification problem of human cancer diseases by using gene expression data.
It is presented a new methodology to analyze microarray datasets and efficiently classify cancer diseases.
arXiv Detail & Related papers (2022-05-27T04:22:10Z) - Multi-class versus One-class classifier in spontaneous speech analysis
oriented to Alzheimer Disease diagnosis [58.720142291102135]
The aim of our project is to contribute to earlier diagnosis of AD and better estimates of its severity by using automatic analysis performed through new biomarkers extracted from speech signal.
The use of information about outlier and Fractal Dimension features improves the system performance.
arXiv Detail & Related papers (2022-03-21T09:57:20Z) - Open-Set Recognition of Breast Cancer Treatments [91.3247063132127]
Open-set recognition generalizes a classification task by classifying test samples as one of the known classes from training or "unknown"
We apply a recent existing Gaussian mixture variational autoencoder model, which achieves state-of-the-art results for image datasets, to breast cancer patient data.
Not only do we obtain more accurate and robust classification results, with a 24.5% average F1 increase compared to a recent method, but we also reexamine open-set recognition in terms of deployability to a clinical setting.
arXiv Detail & Related papers (2022-01-09T04:35:55Z) - Lung Cancer Lesion Detection in Histopathology Images Using Graph-Based
Sparse PCA Network [93.22587316229954]
We propose a graph-based sparse principal component analysis (GS-PCA) network, for automated detection of cancerous lesions on histological lung slides stained by hematoxylin and eosin (H&E)
We evaluate the performance of the proposed algorithm on H&E slides obtained from an SVM K-rasG12D lung cancer mouse model using precision/recall rates, F-score, Tanimoto coefficient, and area under the curve (AUC) of the receiver operator characteristic (ROC)
arXiv Detail & Related papers (2021-10-27T19:28:36Z) - Select-ProtoNet: Learning to Select for Few-Shot Disease Subtype
Prediction [55.94378672172967]
We focus on few-shot disease subtype prediction problem, identifying subgroups of similar patients.
We introduce meta learning techniques to develop a new model, which can extract the common experience or knowledge from interrelated clinical tasks.
Our new model is built upon a carefully designed meta-learner, called Prototypical Network, that is a simple yet effective meta learning machine for few-shot image classification.
arXiv Detail & Related papers (2020-09-02T02:50:30Z) - Semi-supervised Medical Image Classification with Relation-driven
Self-ensembling Model [71.80319052891817]
We present a relation-driven semi-supervised framework for medical image classification.
It exploits the unlabeled data by encouraging the prediction consistency of given input under perturbations.
Our method outperforms many state-of-the-art semi-supervised learning methods on both single-label and multi-label image classification scenarios.
arXiv Detail & Related papers (2020-05-15T06:57:54Z) - Learning from Suspected Target: Bootstrapping Performance for Breast
Cancer Detection in Mammography [6.323318523772466]
We introduce a novel top likelihood loss together with a new sampling procedure to select and train the suspected target regions.
We firstly test our proposed method on a private dense mammogram dataset.
Results show that our proposed method greatly reduce the false positive rate and the specificity is increased by 0.25 on detecting mass type cancer.
arXiv Detail & Related papers (2020-03-01T09:04:24Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.