Densely-Populated Traffic Detection using YOLOv5 and Non-Maximum
Suppression Ensembling
- URL: http://arxiv.org/abs/2108.12118v1
- Date: Fri, 27 Aug 2021 04:58:45 GMT
- Title: Densely-Populated Traffic Detection using YOLOv5 and Non-Maximum
Suppression Ensembling
- Authors: Raian Rahman, Zadid Bin Azad, Md. Bakhtiar Hasan
- Abstract summary: We propose a method that can locate and classify vehicular objects from a given densely crowded image using YOLOv5.
Our proposed model performs well on images taken from both top view and side view of the street in both day and night.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Vehicular object detection is the heart of any intelligent traffic system. It
is essential for urban traffic management. R-CNN, Fast R-CNN, Faster R-CNN and
YOLO were some of the earlier state-of-the-art models. Region based CNN methods
have the problem of higher inference time which makes it unrealistic to use the
model in real-time. YOLO on the other hand struggles to detect small objects
that appear in groups. In this paper, we propose a method that can locate and
classify vehicular objects from a given densely crowded image using YOLOv5. The
shortcoming of YOLO was solved my ensembling 4 different models. Our proposed
model performs well on images taken from both top view and side view of the
street in both day and night. The performance of our proposed model was
measured on Dhaka AI dataset which contains densely crowded vehicular images.
Our experiment shows that our model achieved mAP@0.5 of 0.458 with inference
time of 0.75 sec which outperforms other state-of-the-art models on
performance. Hence, the model can be implemented in the street for real-time
traffic detection which can be used for traffic control and data collection.
Related papers
- An Optimized YOLOv5 Based Approach For Real-time Vehicle Detection At Road Intersections Using Fisheye Cameras [0.13092499936969584]
Real time vehicle detection is a challenging task for urban traffic surveillance.
Fish eye cameras are widely used in real time vehicle detection purpose to provide large area coverage and 360 degree view at junctions.
To overcome challenges such as light glare from vehicles and street lights, shadow, non-linear distortion, scaling issues of vehicles and proper localization of small vehicles, a modified YOLOv5 object detection scheme is proposed.
arXiv Detail & Related papers (2025-02-06T23:42:05Z) - Learning Traffic Anomalies from Generative Models on Real-Time Observations [49.1574468325115]
We use the Spatiotemporal Generative Adversarial Network (STGAN) framework to capture complex spatial and temporal dependencies in traffic data.
We apply STGAN to real-time, minute-by-minute observations from 42 traffic cameras across Gothenburg, Sweden, collected over several months in 2020.
Our results demonstrate that the model effectively detects traffic anomalies with high precision and low false positive rates.
arXiv Detail & Related papers (2025-02-03T14:23:23Z) - Optimizing YOLO Architectures for Optimal Road Damage Detection and Classification: A Comparative Study from YOLOv7 to YOLOv10 [0.0]
This paper presents a comprehensive workflow for road damage detection using deep learning models.
To accommodate hardware limitations, large images are cropped, and lightweight models are utilized.
The proposed approach employs multiple model architectures, including a custom YOLOv7 model with Coordinate Attention layers and a Tiny YOLOv7 model.
arXiv Detail & Related papers (2024-10-10T22:55:12Z) - A lightweight YOLOv5-FFM model for occlusion pedestrian detection [1.62877896907106]
YOLO, as an efficient and simple one-stage target detection method, is often used for pedestrian detection in various environments.
In this paper, we propose an improved lightweight YOLOv5 model to deal with these problems.
This model can achieve better pedestrian detection accuracy with fewer floating-point operations (FLOPs), especially for occluded targets.
arXiv Detail & Related papers (2024-08-13T04:42:02Z) - Investigating YOLO Models Towards Outdoor Obstacle Detection For
Visually Impaired People [3.4628430044380973]
Seven different YOLO object detection models were implemented.
YOLOv8 was found to be the best model, which reached a precision of $80%$ and a recall of $68.2%$ on a well-known Obstacle dataset.
YOLO-NAS was found to be suboptimal for the obstacle detection task.
arXiv Detail & Related papers (2023-12-10T13:16:22Z) - YOLO-MS: Rethinking Multi-Scale Representation Learning for Real-time Object Detection [63.36722419180875]
We provide an efficient and performant object detector, termed YOLO-MS.
We train our YOLO-MS on the MS COCO dataset from scratch without relying on any other large-scale datasets.
Our work can also serve as a plug-and-play module for other YOLO models.
arXiv Detail & Related papers (2023-08-10T10:12:27Z) - Performance Analysis of YOLO-based Architectures for Vehicle Detection
from Traffic Images in Bangladesh [0.0]
We find the best-suited YOLO architecture for fast and accurate vehicle detection from traffic images in Bangladesh.
Models were trained on a dataset containing 7390 images belonging to 21 types of vehicles.
We found the YOLOV5x variant to be the best-suited model, performing better than YOLOv3 and YOLOv5s models respectively by 7 & 4 percent in mAP, and 12 & 8.5 percent in terms of Accuracy.
arXiv Detail & Related papers (2022-12-18T18:53:35Z) - Real Time Monocular Vehicle Velocity Estimation using Synthetic Data [78.85123603488664]
We look at the problem of estimating the velocity of road vehicles from a camera mounted on a moving car.
We propose a two-step approach where first an off-the-shelf tracker is used to extract vehicle bounding boxes and then a small neural network is used to regress the vehicle velocity.
arXiv Detail & Related papers (2021-09-16T13:10:27Z) - Workshop on Autonomous Driving at CVPR 2021: Technical Report for
Streaming Perception Challenge [57.647371468876116]
We introduce our real-time 2D object detection system for the realistic autonomous driving scenario.
Our detector is built on a newly designed YOLO model, called YOLOX.
On the Argoverse-HD dataset, our system achieves 41.0 streaming AP, which surpassed second place by 7.8/6.1 on detection-only track/fully track, respectively.
arXiv Detail & Related papers (2021-07-27T06:36:06Z) - One Million Scenes for Autonomous Driving: ONCE Dataset [91.94189514073354]
We introduce the ONCE dataset for 3D object detection in the autonomous driving scenario.
The data is selected from 144 driving hours, which is 20x longer than the largest 3D autonomous driving dataset available.
We reproduce and evaluate a variety of self-supervised and semi-supervised methods on the ONCE dataset.
arXiv Detail & Related papers (2021-06-21T12:28:08Z) - Deep traffic light detection by overlaying synthetic context on
arbitrary natural images [49.592798832978296]
We propose a method to generate artificial traffic-related training data for deep traffic light detectors.
This data is generated using basic non-realistic computer graphics to blend fake traffic scenes on top of arbitrary image backgrounds.
It also tackles the intrinsic data imbalance problem in traffic light datasets, caused mainly by the low amount of samples of the yellow state.
arXiv Detail & Related papers (2020-11-07T19:57:22Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.