Convolutional Autoencoders for Reduced-Order Modeling
- URL: http://arxiv.org/abs/2108.12453v1
- Date: Fri, 27 Aug 2021 18:37:23 GMT
- Title: Convolutional Autoencoders for Reduced-Order Modeling
- Authors: Sreeram Venkat, Ralph C. Smith, Carl T. Kelley
- Abstract summary: We create and train convolutional autoencoders that perform nonlinear dimension reduction for the wave and Kuramoto- Shivasinsky equations.
We present training methods independent of full-order model samples and use the manifold least-squares Petrov-Galerkin projection method to define a reduced-order model.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In the construction of reduced-order models for dynamical systems, linear
projection methods, such as proper orthogonal decompositions, are commonly
employed. However, for many dynamical systems, the lower dimensional
representation of the state space can most accurately be described by a
\textit{nonlinear} manifold. Previous research has shown that deep learning can
provide an efficient method for performing nonlinear dimension reduction,
though they are dependent on the availability of training data and are often
problem-specific \citep[see][]{carlberg_ca}. Here, we utilize randomized
training data to create and train convolutional autoencoders that perform
nonlinear dimension reduction for the wave and Kuramoto-Shivasinsky equations.
Moreover, we present training methods that are independent of full-order model
samples and use the manifold least-squares Petrov-Galerkin projection method to
define a reduced-order model for the heat, wave, and Kuramoto-Shivasinsky
equations using the same autoencoder.
Related papers
- Data-driven Nonlinear Model Reduction using Koopman Theory: Integrated
Control Form and NMPC Case Study [56.283944756315066]
We propose generic model structures combining delay-coordinate encoding of measurements and full-state decoding to integrate reduced Koopman modeling and state estimation.
A case study demonstrates that our approach provides accurate control models and enables real-time capable nonlinear model predictive control of a high-purity cryogenic distillation column.
arXiv Detail & Related papers (2024-01-09T11:54:54Z) - The Convex Landscape of Neural Networks: Characterizing Global Optima
and Stationary Points via Lasso Models [75.33431791218302]
Deep Neural Network Network (DNN) models are used for programming purposes.
In this paper we examine the use of convex neural recovery models.
We show that all the stationary non-dimensional objective objective can be characterized as the standard a global subsampled convex solvers program.
We also show that all the stationary non-dimensional objective objective can be characterized as the standard a global subsampled convex solvers program.
arXiv Detail & Related papers (2023-12-19T23:04:56Z) - Learning Nonlinear Projections for Reduced-Order Modeling of Dynamical
Systems using Constrained Autoencoders [0.0]
We introduce a class of nonlinear projections described by constrained autoencoder neural networks in which both the manifold and the projection fibers are learned from data.
Our architecture uses invertible activation functions and biorthogonal weight matrices to ensure that the encoder is a left inverse of the decoder.
We also introduce new dynamics-aware cost functions that promote learning of oblique projection fibers that account for fast dynamics and nonnormality.
arXiv Detail & Related papers (2023-07-28T04:01:48Z) - Symplectic model reduction of Hamiltonian systems using data-driven
quadratic manifolds [0.559239450391449]
We present two novel approaches for the symplectic model reduction of high-dimensional Hamiltonian systems.
The addition of quadratic terms to the state approximation, which sits at the heart of the proposed methodologies, enables us to better represent intrinsic low-dimensionality.
arXiv Detail & Related papers (2023-05-24T18:23:25Z) - VTAE: Variational Transformer Autoencoder with Manifolds Learning [144.0546653941249]
Deep generative models have demonstrated successful applications in learning non-linear data distributions through a number of latent variables.
The nonlinearity of the generator implies that the latent space shows an unsatisfactory projection of the data space, which results in poor representation learning.
We show that geodesics and accurate computation can substantially improve the performance of deep generative models.
arXiv Detail & Related papers (2023-04-03T13:13:19Z) - Interpretable reduced-order modeling with time-scale separation [9.889399863931676]
Partial Differential Equations (PDEs) with high dimensionality are commonly encountered in computational physics and engineering.
We propose a data-driven scheme that automates the identification of the time-scales involved.
We show that this data-driven scheme can automatically learn the independent processes that decompose a system of linear ODEs.
arXiv Detail & Related papers (2023-03-03T19:23:59Z) - Self-Supervised Training with Autoencoders for Visual Anomaly Detection [61.62861063776813]
We focus on a specific use case in anomaly detection where the distribution of normal samples is supported by a lower-dimensional manifold.
We adapt a self-supervised learning regime that exploits discriminative information during training but focuses on the submanifold of normal examples.
We achieve a new state-of-the-art result on the MVTec AD dataset -- a challenging benchmark for visual anomaly detection in the manufacturing domain.
arXiv Detail & Related papers (2022-06-23T14:16:30Z) - Nonlinear Isometric Manifold Learning for Injective Normalizing Flows [58.720142291102135]
We use isometries to separate manifold learning and density estimation.
We also employ autoencoders to design embeddings with explicit inverses that do not distort the probability distribution.
arXiv Detail & Related papers (2022-03-08T08:57:43Z) - Non-linear manifold ROM with Convolutional Autoencoders and Reduced
Over-Collocation method [0.0]
Non-affine parametric dependencies, nonlinearities and advection-dominated regimes of the model of interest can result in a slow Kolmogorov n-width decay.
We implement the non-linear manifold method introduced by Carlberg et al [37] with hyper-reduction achieved through reduced over-collocation and teacher-student training of a reduced decoder.
We test the methodology on a 2d non-linear conservation law and a 2d shallow water models, and compare the results obtained with a purely data-driven method for which the dynamics is evolved in time with a long-short term memory network
arXiv Detail & Related papers (2022-03-01T11:16:50Z) - Nonlinear proper orthogonal decomposition for convection-dominated flows [0.0]
We propose an end-to-end Galerkin-free model combining autoencoders with long short-term memory networks for dynamics.
Our approach not only improves the accuracy, but also significantly reduces the computational cost of training and testing.
arXiv Detail & Related papers (2021-10-15T18:05:34Z) - Distilling Interpretable Models into Human-Readable Code [71.11328360614479]
Human-readability is an important and desirable standard for machine-learned model interpretability.
We propose to train interpretable models using conventional methods, and then distill them into concise, human-readable code.
We describe a piecewise-linear curve-fitting algorithm that produces high-quality results efficiently and reliably across a broad range of use cases.
arXiv Detail & Related papers (2021-01-21T01:46:36Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.