Self-Supervised Coarsening of Unstructured Grid with Automatic Differentiation
- URL: http://arxiv.org/abs/2507.18297v1
- Date: Thu, 24 Jul 2025 11:02:13 GMT
- Title: Self-Supervised Coarsening of Unstructured Grid with Automatic Differentiation
- Authors: Sergei Shumilin, Alexander Ryabov, Nikolay Yavich, Evgeny Burnaev, Vladimir Vanovskiy,
- Abstract summary: In this work, we present an original algorithm to coarsen an unstructured grid based on the concepts of differentiable physics.<n>We demonstrate performance of the algorithm on two PDEs: a linear equation which governs slightly compressible fluid flow in porous media and the wave equation.<n>Our results show that in the considered scenarios, we reduced the number of grid points up to 10 times while preserving the modeled variable dynamics in the points of interest.
- Score: 55.88862563823878
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Due to the high computational load of modern numerical simulation, there is a demand for approaches that would reduce the size of discrete problems while keeping the accuracy reasonable. In this work, we present an original algorithm to coarsen an unstructured grid based on the concepts of differentiable physics. We achieve this by employing k-means clustering, autodifferentiation and stochastic minimization algorithms. We demonstrate performance of the designed algorithm on two PDEs: a linear parabolic equation which governs slightly compressible fluid flow in porous media and the wave equation. Our results show that in the considered scenarios, we reduced the number of grid points up to 10 times while preserving the modeled variable dynamics in the points of interest. The proposed approach can be applied to the simulation of an arbitrary system described by evolutionary partial differential equations.
Related papers
- MultiPDENet: PDE-embedded Learning with Multi-time-stepping for Accelerated Flow Simulation [48.41289705783405]
We propose a PDE-embedded network with multiscale time stepping (MultiPDENet)<n>In particular, we design a convolutional filter based on the structure of finite difference with a small number of parameters to optimize.<n>A Physics Block with a 4th-order Runge-Kutta integrator at the fine time scale is established that embeds the structure of PDEs to guide the prediction.
arXiv Detail & Related papers (2025-01-27T12:15:51Z) - On the Trajectory Regularity of ODE-based Diffusion Sampling [79.17334230868693]
Diffusion-based generative models use differential equations to establish a smooth connection between a complex data distribution and a tractable prior distribution.
In this paper, we identify several intriguing trajectory properties in the ODE-based sampling process of diffusion models.
arXiv Detail & Related papers (2024-05-18T15:59:41Z) - Momentum Particle Maximum Likelihood [2.4561590439700076]
We propose an analogous dynamical-systems-inspired approach to minimizing the free energy functional.
By discretizing the system, we obtain a practical algorithm for Maximum likelihood estimation in latent variable models.
The algorithm outperforms existing particle methods in numerical experiments and compares favourably with other MLE algorithms.
arXiv Detail & Related papers (2023-12-12T14:53:18Z) - Enhancing Low-Order Discontinuous Galerkin Methods with Neural Ordinary Differential Equations for Compressible Navier--Stokes Equations [0.1578515540930834]
We introduce an end-to-end differentiable framework for solving the compressible Navier-Stokes equations.<n>This integrated approach combines a differentiable discontinuous Galerkin solver with a neural network source term.<n>We demonstrate the performance of the proposed framework through two examples.
arXiv Detail & Related papers (2023-10-29T04:26:23Z) - Parallel-in-Time Probabilistic Numerical ODE Solvers [35.716255949521305]
Probabilistic numerical solvers for ordinary differential equations (ODEs) treat the numerical simulation of dynamical systems as problems of Bayesian state estimation.
We build on the time-parallel formulation of iterated extended Kalman smoothers to formulate a parallel-in-time probabilistic numerical ODE solver.
arXiv Detail & Related papers (2023-10-02T12:32:21Z) - A Deep Unrolling Model with Hybrid Optimization Structure for Hyperspectral Image Deconvolution [50.13564338607482]
We propose a novel optimization framework for the hyperspectral deconvolution problem, called DeepMix.<n>It consists of three distinct modules, namely, a data consistency module, a module that enforces the effect of the handcrafted regularizers, and a denoising module.<n>This work proposes a context aware denoising module designed to sustain the advancements achieved by the cooperative efforts of the other modules.
arXiv Detail & Related papers (2023-06-10T08:25:16Z) - Efficient Quantum Algorithms for Nonlinear Stochastic Dynamical Systems [2.707154152696381]
We propose efficient quantum algorithms for solving nonlinear differential equations (SDE) via the associated Fokker-Planck equation (FPE)
We discretize the FPE in space and time using two well-known numerical schemes, namely Chang-Cooper and implicit finite difference.
We then compute the solution of the resulting system of linear equations using the quantum linear systems.
arXiv Detail & Related papers (2023-03-04T17:40:23Z) - Numerical Solution of Stiff Ordinary Differential Equations with Random
Projection Neural Networks [0.0]
We propose a numerical scheme based on Random Projection Neural Networks (RPNN) for the solution of Ordinary Differential Equations (ODEs)
We show that our proposed scheme yields good numerical approximation accuracy without being affected by the stiffness, thus outperforming in same cases the textttode45 and textttode15s functions.
arXiv Detail & Related papers (2021-08-03T15:49:17Z) - DiffPD: Differentiable Projective Dynamics with Contact [65.88720481593118]
We present DiffPD, an efficient differentiable soft-body simulator with implicit time integration.
We evaluate the performance of DiffPD and observe a speedup of 4-19 times compared to the standard Newton's method in various applications.
arXiv Detail & Related papers (2021-01-15T00:13:33Z) - Combining Differentiable PDE Solvers and Graph Neural Networks for Fluid
Flow Prediction [79.81193813215872]
We develop a hybrid (graph) neural network that combines a traditional graph convolutional network with an embedded differentiable fluid dynamics simulator inside the network itself.
We show that we can both generalize well to new situations and benefit from the substantial speedup of neural network CFD predictions.
arXiv Detail & Related papers (2020-07-08T21:23:19Z) - Multipole Graph Neural Operator for Parametric Partial Differential
Equations [57.90284928158383]
One of the main challenges in using deep learning-based methods for simulating physical systems is formulating physics-based data.
We propose a novel multi-level graph neural network framework that captures interaction at all ranges with only linear complexity.
Experiments confirm our multi-graph network learns discretization-invariant solution operators to PDEs and can be evaluated in linear time.
arXiv Detail & Related papers (2020-06-16T21:56:22Z) - Non-linear reduced modeling of dynamical systems using kernel methods and low-rank approximation [5.935306543481018]
We propose a new efficient algorithm for data-driven reduced modeling of non-linear dynamics based on linear approximations in a kernel Hilbert space.<n>This algorithm takes advantage of the closed-form solution of a low-rank constraint optimization problem while exploiting advantageously kernel-based computations.
arXiv Detail & Related papers (2017-10-30T13:06:19Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.