論文の概要: An Introduction to Variational Inference
- arxiv url: http://arxiv.org/abs/2108.13083v1
- Date: Mon, 30 Aug 2021 09:40:04 GMT
- ステータス: 処理完了
- システム内更新日: 2021-08-31 15:05:15.162761
- Title: An Introduction to Variational Inference
- Title(参考訳): 変分推論入門
- Authors: Ankush Ganguly and Samuel W. F. Earp
- Abstract要約: 本稿では,変分推論(VI)の概念を紹介する。
VIは、最適化技術を用いて複雑な確率密度を推定する機械学習で一般的な方法である。
可変オートエンコーダ(VAE)とVAE-Generative Adversarial Network(VAE-GAN)へのVIの適用について論じる。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Approximating complex probability densities is a core problem in modern
statistics. In this paper, we introduce the concept of Variational Inference
(VI), a popular method in machine learning that uses optimization techniques to
estimate complex probability densities. This property allows VI to converge
faster than classical methods, such as, Markov Chain Monte Carlo sampling.
Conceptually, VI works by choosing a family of probability density functions
and then finding the one closest to the actual probability density -- often
using the Kullback-Leibler (KL) divergence as the optimization metric. We
introduce the Evidence Lower Bound to tractably compute the approximated
probability density and we review the ideas behind mean-field variational
inference. Finally, we discuss the applications of VI to variational
auto-encoders (VAE) and VAE-Generative Adversarial Network (VAE-GAN). With this
paper, we aim to explain the concept of VI and assist in future research with
this approach.
- Abstract(参考訳): 複素確率密度の近似は、現代の統計学における中心的な問題である。
本稿では,複雑な確率密度を推定するために最適化手法を用いる機械学習において,変分推論(VI)の概念を導入する。
この性質により、viはマルコフ連鎖モンテカルロサンプリングのような古典的手法よりも高速に収束することができる。
概念的には、VI は確率密度関数の族を選択して、実際の確率密度に最も近いものを見つけることで機能する。
近似確率密度を気軽に計算するために下限のエビデンスを導入し,平均場変分推論の背後にある考え方を考察する。
最後に,Ve-Generative Adversarial Network (VAE-GAN) およびVAE-Generative Adversarial Network (VAE-GAN) へのVIの適用について述べる。
本稿では,viの概念を説明し,このアプローチによる今後の研究を支援することを目的とする。
関連論文リスト
- PAVI: Plate-Amortized Variational Inference [55.975832957404556]
数百人の被験者のコホート上で何百万もの計測が行われる大集団研究において、推論は困難である。
この大きな濃度は、オフザシェルフ変分推論(VI)を計算的に非現実的である。
本研究では,大集団研究に効率よく取り組む構造VIファミリーを設計する。
論文 参考訳(メタデータ) (2023-08-30T13:22:20Z) - Amortized Variational Inference: When and Why? [17.1222896154385]
償却変分推論(A-VI)は共通の推論関数を学習し、各観測結果を対応する潜伏変数の近似後方にマッピングする。
A-VI が F-VI の最適解を得るために必要で十分かつ検証可能な潜在変数モデル上で条件を導出する。
論文 参考訳(メタデータ) (2023-07-20T16:45:22Z) - On the Convergence of Coordinate Ascent Variational Inference [11.166959724276337]
平均場 (MF) VI を実装するための共通座標アセント変分推論 (CAVI) アルゴリズムについて検討する。
我々はCAVIの大域的あるいは局所的な指数収束を証明するための一般的な条件を提供する。
目的関数に影響を及ぼす構成ブロック間の相互作用を特徴付けるための一般化相関の新しい概念を紹介する。
論文 参考訳(メタデータ) (2023-06-01T20:19:30Z) - Manifold Gaussian Variational Bayes on the Precision Matrix [70.44024861252554]
複雑なモデルにおける変分推論(VI)の最適化アルゴリズムを提案する。
本研究では,変分行列上の正定値制約を満たすガウス変分推論の効率的なアルゴリズムを開発した。
MGVBPはブラックボックスの性質のため、複雑なモデルにおけるVIのための準備が整ったソリューションである。
論文 参考訳(メタデータ) (2022-10-26T10:12:31Z) - Amortized Variational Inference: A Systematic Review [0.0]
変分推論(VI)の中核となる原理は、複雑な後続確率密度の統計的推論問題を、トラクタブルな最適化問題に変換することである。
従来のVIアルゴリズムは大規模データセットには拡張性がなく、データポイントのアウトオブバウンドを容易に推測できない。
ブラックボックスやアモールタイズVIのようなこの分野の最近の進歩は、これらの問題に対処するのに役立っている。
論文 参考訳(メタデータ) (2022-09-22T09:45:10Z) - Regularizing Variational Autoencoder with Diversity and Uncertainty
Awareness [61.827054365139645]
変分オートエンコーダ(VAE)は、償却変分推論に基づいて潜伏変数の後部を近似する。
よりディバースで不確実な潜在空間を学習するための代替モデルDU-VAEを提案する。
論文 参考訳(メタデータ) (2021-10-24T07:58:13Z) - Interpolating between sampling and variational inference with infinite
stochastic mixtures [6.021787236982659]
サンプリングと変分推論(VI)は相補的な強度を持つ近似推論の方法の2つの大きなファミリーである。
本稿では,サンプリングとVIの双方の強度のバランスをとる中間アルゴリズムを構築するためのフレームワークを開発する。
この研究は、サンプリングとVIの相補的な強みを組み合わせた、非常に柔軟で単純な推論手法の族への第一歩である。
論文 参考訳(メタデータ) (2021-10-18T20:50:06Z) - Variational Refinement for Importance Sampling Using the Forward
Kullback-Leibler Divergence [77.06203118175335]
変分推論(VI)はベイズ推論における正確なサンプリングの代替として人気がある。
重要度サンプリング(IS)は、ベイズ近似推論手順の推定を微調整し、偏りを逸脱するためにしばしば用いられる。
近似ベイズ推論のための最適化手法とサンプリング手法の新たな組み合わせを提案する。
論文 参考訳(メタデータ) (2021-06-30T11:00:24Z) - Loss function based second-order Jensen inequality and its application
to particle variational inference [112.58907653042317]
粒子変分推論(PVI)は、後部分布の実験的近似としてモデルのアンサンブルを用いる。
PVIは、最適化されたモデルの多様性を保証するために、各モデルを反発力で反復的に更新する。
我々は,新たな一般化誤差を導出し,モデルの多様性を高めて低減できることを示す。
論文 参考訳(メタデータ) (2021-06-09T12:13:51Z) - Meta-Learning Divergences of Variational Inference [49.164944557174294]
変分推論(VI)は、近似ベイズ推論において重要な役割を果たす。
本稿では,興味ある課題に適した分散度を学習するためのメタ学習アルゴリズムを提案する。
提案手法はガウス混合分布近似の標準VIより優れていることを示す。
論文 参考訳(メタデータ) (2020-07-06T17:43:01Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。