Differentiable Prompt Makes Pre-trained Language Models Better Few-shot
Learners
- URL: http://arxiv.org/abs/2108.13161v2
- Date: Tue, 31 Aug 2021 04:25:51 GMT
- Title: Differentiable Prompt Makes Pre-trained Language Models Better Few-shot
Learners
- Authors: Ningyu Zhang, Luoqiu Li, Xiang Chen, Shumin Deng, Zhen Bi, Chuanqi
Tan, Fei Huang, Huajun Chen
- Abstract summary: This study proposes a novel pluggable, and efficient approach named DifferentiAble pRompT (DART)
It can convert small language models into better few-shot learners without any prompt engineering.
A comprehensive evaluation of standard NLP tasks demonstrates that the proposed approach achieves a better few-shot performance.
- Score: 23.150999852147283
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Large-scale pre-trained language models have contributed significantly to
natural language processing by demonstrating remarkable abilities as few-shot
learners. However, their effectiveness depends mainly on scaling the model
parameters and prompt design, hindering their implementation in most real-world
applications. This study proposes a novel pluggable, extensible, and efficient
approach named DifferentiAble pRompT (DART), which can convert small language
models into better few-shot learners without any prompt engineering. The main
principle behind this approach involves reformulating potential natural
language processing tasks into the task of a pre-trained language model and
differentially optimizing the prompt template as well as the target label with
backpropagation. Furthermore, the proposed approach can be: (i) Plugged to any
pre-trained language models; (ii) Extended to widespread classification tasks.
A comprehensive evaluation of standard NLP tasks demonstrates that the proposed
approach achieves a better few-shot performance.
Related papers
- Language Model Pre-Training with Sparse Latent Typing [66.75786739499604]
We propose a new pre-training objective, Sparse Latent Typing, which enables the model to sparsely extract sentence-level keywords with diverse latent types.
Experimental results show that our model is able to learn interpretable latent type categories in a self-supervised manner without using any external knowledge.
arXiv Detail & Related papers (2022-10-23T00:37:08Z) - Bidirectional Language Models Are Also Few-shot Learners [54.37445173284831]
We present SAP (Sequential Autoregressive Prompting), a technique that enables the prompting of bidirectional models.
We show SAP is effective on question answering and summarization.
For the first time, our results demonstrate prompt-based learning is an emergent property of a broader class of language models.
arXiv Detail & Related papers (2022-09-29T01:35:57Z) - Improving Pre-trained Language Model Fine-tuning with Noise Stability
Regularization [94.4409074435894]
We propose a novel and effective fine-tuning framework, named Layerwise Noise Stability Regularization (LNSR)
Specifically, we propose to inject the standard Gaussian noise and regularize hidden representations of the fine-tuned model.
We demonstrate the advantages of the proposed method over other state-of-the-art algorithms including L2-SP, Mixout and SMART.
arXiv Detail & Related papers (2022-06-12T04:42:49Z) - Few-shot Prompting Towards Controllable Response Generation [49.479958672988566]
We first explored the combination of prompting and reinforcement learning (RL) to steer models' generation without accessing any of the models' parameters.
We apply multi-task learning to make the model learn to generalize to new tasks better.
Experiment results show that our proposed method can successfully control several state-of-the-art (SOTA) dialogue models without accessing their parameters.
arXiv Detail & Related papers (2022-06-08T14:48:06Z) - An Exploration of Prompt Tuning on Generative Spoken Language Model for
Speech Processing Tasks [112.1942546460814]
We report the first exploration of the prompt tuning paradigm for speech processing tasks based on Generative Spoken Language Model (GSLM)
Experiment results show that the prompt tuning technique achieves competitive performance in speech classification tasks with fewer trainable parameters than fine-tuning specialized downstream models.
arXiv Detail & Related papers (2022-03-31T03:26:55Z) - An Application of Pseudo-Log-Likelihoods to Natural Language Scoring [5.382454613390483]
A language model with relatively few parameters and training steps can outperform it on a recent large data set.
We produce some absolute state-of-the-art results for common sense reasoning in binary choice tasks.
We argue that robustness of the smaller model ought to be understood in terms of compositionality.
arXiv Detail & Related papers (2022-01-23T22:00:54Z) - LICHEE: Improving Language Model Pre-training with Multi-grained
Tokenization [19.89228774074371]
We propose a simple yet effective pre-training method named LICHEE to efficiently incorporate multi-grained information of input text.
Our method can be applied to various pre-trained language models and improve their representation capability.
arXiv Detail & Related papers (2021-08-02T12:08:19Z) - Making Pre-trained Language Models Better Few-shot Learners [11.90626040104822]
Recent GPT-3 model achieves remarkable few-shot performance solely by leveraging a natural-language prompt and a few task demonstrations as input context.
Inspired by their findings, we study few-shot learning in a more practical scenario, where we use smaller language models for which fine-tuning is computationally efficient.
We present LM-BFF--better few-shot fine-tuning of language models--a suite of simple and complementary techniques for fine-tuning language models on a small number of annotated examples.
arXiv Detail & Related papers (2020-12-31T17:21:26Z) - SLM: Learning a Discourse Language Representation with Sentence
Unshuffling [53.42814722621715]
We introduce Sentence-level Language Modeling, a new pre-training objective for learning a discourse language representation.
We show that this feature of our model improves the performance of the original BERT by large margins.
arXiv Detail & Related papers (2020-10-30T13:33:41Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.