Background Field Method and Initial-Time Singularity for Coherent States
- URL: http://arxiv.org/abs/2108.13235v1
- Date: Mon, 30 Aug 2021 13:43:40 GMT
- Title: Background Field Method and Initial-Time Singularity for Coherent States
- Authors: Lasha Berezhiani, Giordano Cintia, Michael Zantedeschi
- Abstract summary: The background field method is adopted for studying the dynamics of coherent states within an interacting scalar field theory.
The quantum depletion of the expectation value of the field-operator is demonstrated to be due to the annihilation of the condensate constituents into relativistic quanta.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The background field method is adopted for studying the dynamics of coherent
states within an interacting scalar field theory. Focusing on a coherent state
that corresponds to the homogeneous condensate, the quantum depletion of the
expectation value of the field-operator is demonstrated to be due to the
annihilation of the condensate constituents into relativistic quanta. Moreover,
due to the fact that the initial field acceleration and energy for the
non-squeezed coherent states are determined in terms of bare coupling constant,
instead of the renormalized one, the appearance of perturbative singularities
is shown to be inevitable. In other words, consistency of these states requires
the finiteness of the bare coupling constant, through the resummation.
Related papers
- Field mixing in a thermal medium: A quantum master equation approach [10.985518406776766]
We study the nonequilibrium dynamics of the indirect mixing of two (pseudo-)scalar fields induced by their couplings to common decay channels in a medium.
arXiv Detail & Related papers (2024-08-16T00:02:08Z) - Frequency-resolved Purcell effect for the dissipative generation of
steady-state entanglement [49.1574468325115]
We report a driven-dissipative mechanism to generate stationary entangled $W$ states among strongly-interacting quantum emitters placed within a cavity.
The non-harmonic energy structure of the interacting ensemble allows this transition to be resonantly selected by the cavity.
Evidence of this purely dissipative mechanism should be observable in state-of-the-art cavity QED systems in the solid-state.
arXiv Detail & Related papers (2023-12-19T18:04:22Z) - Perturbative Construction of Coherent States [0.0]
We show that a non-Gaussian alteration of squeezed coherent states is necessary.
The modifications of the coherent state we propose are perturbative in $hbar$ and may be an indication that coherence must be viewed through a nonlinearly redefined, background-dependent, degree of freedom.
arXiv Detail & Related papers (2023-11-30T15:59:13Z) - Real-time dynamics of false vacuum decay [49.1574468325115]
We investigate false vacuum decay of a relativistic scalar field in the metastable minimum of an asymmetric double-well potential.
We employ the non-perturbative framework of the two-particle irreducible (2PI) quantum effective action at next-to-leading order in a large-N expansion.
arXiv Detail & Related papers (2023-10-06T12:44:48Z) - Measurement phase transitions in the no-click limit as quantum phase
transitions of a non-hermitean vacuum [77.34726150561087]
We study phase transitions occurring in the stationary state of the dynamics of integrable many-body non-Hermitian Hamiltonians.
We observe that the entanglement phase transitions occurring in the stationary state have the same nature as that occurring in the vacuum of the non-hermitian Hamiltonian.
arXiv Detail & Related papers (2023-01-18T09:26:02Z) - Topologically bound states, non-Hermitian skin effect and flat bands,
induced by two-particle interaction [91.3755431537592]
We study theoretically repelling quantum states of two spinless particles in a one-dimensional tight-binding model.
We demonstrate, that when the particles are not identical, their interaction drives nontrivial correlated two-particle states.
arXiv Detail & Related papers (2022-11-11T07:34:54Z) - Dissipative preparation of fractional Chern insulators [3.3234256205258084]
We show how Laughlin states can be to good approximation prepared in a dissipative fashion from arbitrary initial states.
We observe a certain robustness regarding the overlap of the steady state with fractional quantum Hall states for experimentally well-controlled flux densities.
arXiv Detail & Related papers (2021-08-23T18:00:02Z) - Interplay between transport and quantum coherences in free fermionic
systems [58.720142291102135]
We study the quench dynamics in free fermionic systems.
In particular, we identify a function, that we dub emphtransition map, which takes the value of the stationary current as input and gives the value of correlation as output.
arXiv Detail & Related papers (2021-03-24T17:47:53Z) - Non-equilibrium stationary states of quantum non-Hermitian lattice
models [68.8204255655161]
We show how generic non-Hermitian tight-binding lattice models can be realized in an unconditional, quantum-mechanically consistent manner.
We focus on the quantum steady states of such models for both fermionic and bosonic systems.
arXiv Detail & Related papers (2021-03-02T18:56:44Z) - On Evolution of Coherent States as Quantum Counterpart of Classical
Dynamics [0.0]
Quantum dynamics of coherent states is studied within quantum field theory.
We use two complementary methods: by organizing the evolution as a Taylor series in elapsed time and by perturbative expansion in coupling within the interaction-picture formalism.
arXiv Detail & Related papers (2020-11-23T06:08:29Z) - Intrinsic decoherence effects on measurement-induced nonlocality [1.5630592429258865]
We study the dynamics of entanglement quantified by the concurrence and measurement-induced nonlocality (MIN) based on Hilbert-Schmidt norm.
We show that the existence of quantum correlation captured by MIN in the unentangled state.
arXiv Detail & Related papers (2020-05-13T16:18:25Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.