論文の概要: Towards Consistent Document-level Entity Linking: Joint Models for
Entity Linking and Coreference Resolution
- arxiv url: http://arxiv.org/abs/2108.13530v1
- Date: Mon, 30 Aug 2021 21:46:12 GMT
- ステータス: 処理完了
- システム内更新日: 2021-09-01 14:33:49.954744
- Title: Towards Consistent Document-level Entity Linking: Joint Models for
Entity Linking and Coreference Resolution
- Title(参考訳): 一貫性のあるドキュメントレベルのエンティティリンクに向けて:エンティティリンクとコリファレンス解決のためのジョイントモデル
- Authors: Klim Zaporojets, Johannes Deleu, Thomas Demeester, Chris Develder
- Abstract要約: 文書レベルのエンティティリンク(EL)の課題について考察する。
我々は、コア参照解決(coref)とともにELタスクに参加することを提案する。
- 参考スコア(独自算出の注目度): 15.265013409559227
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We consider the task of document-level entity linking (EL), where it is
important to make consistent decisions for entity mentions over the full
document jointly. We aim to leverage explicit "connections" among mentions
within the document itself: we propose to join the EL task with that of
coreference resolution (coref). This is complementary to related works that
exploit either (i) implicit document information (e.g., latent relations among
entity mentions, or general language models) or (ii) connections between the
candidate links (e.g, as inferred from the external knowledge base).
Specifically, we cluster mentions that are linked via coreference, and enforce
a single EL for all of the clustered mentions together. The latter constraint
has the added benefit of increased coverage by joining EL candidate lists for
the thus clustered mentions. We formulate the coref+EL problem as a structured
prediction task over directed trees and use a globally normalized model to
solve it. Experimental results on two datasets show a boost of up to +5%
F1-score on both coref and EL tasks, compared to their standalone counterparts.
For a subset of hard cases, with individual mentions lacking the correct EL in
their candidate entity list, we obtain a +50% increase in accuracy.
- Abstract(参考訳): ドキュメントレベルのエンティティリンク(el:document-level entity link)のタスクについて検討する。
我々は文書内の言及の中で明示的な「接続」を活用することを目標としている:我々はelタスクにcoreference resolution (coref)のそれと合流することを提案する。
これは、(i)暗黙の文書情報(例:エンティティ参照間の潜在関係、または一般言語モデル)または(ii)候補リンク間の接続(例:外部知識ベースから推測される)を利用する関連する作業と相補的である。
具体的には、クラスタ参照はコリファレンスを通じてリンクされ、すべてのクラスタ参照に対して単一のelを強制します。
後者の制約は、el候補リストをクラスタ化することで、カバー範囲を増やすというメリットがある。
有向木上の構造化予測タスクとしてcoref+el問題を定式化し,グローバル正規化モデルを用いて解く。
2つのデータセットの実験結果から、CorefタスクとELタスクの両方で最大5%のF1スコアが向上した。
ハードケースのサブセットの場合、候補エンティティリストに正しいELが欠落している個々に言及すると、精度は+50%向上する。
関連論文リスト
- OneNet: A Fine-Tuning Free Framework for Few-Shot Entity Linking via Large Language Model Prompting [49.655711022673046]
OneNetは、大規模言語モデル(LLM)の少数ショット学習機能を利用する革新的なフレームワークで、微調整は不要である。
1)無関係なエンティティを要約してフィルタリングすることで入力を単純化するエンティティリダクションプロセッサ,(2)コンテキスト的キューと事前知識を組み合わせて正確なエンティティリンクを行うデュアルパースペクティブエンティティリンカ,(3)エンティティリンク推論における幻覚を緩和するユニークな一貫性アルゴリズムを利用するエンティティコンセンサス判定器,である。
論文 参考訳(メタデータ) (2024-10-10T02:45:23Z) - Generative Retrieval Meets Multi-Graded Relevance [104.75244721442756]
GRADed Generative Retrieval (GR$2$)というフレームワークを紹介します。
GR$2$は2つの重要なコンポーネントに焦点を当てている。
マルチグレードとバイナリの関連性を持つデータセットの実験は,GR$2$の有効性を示した。
論文 参考訳(メタデータ) (2024-09-27T02:55:53Z) - Entity Disambiguation via Fusion Entity Decoding [68.77265315142296]
より詳細なエンティティ記述を持つエンティティを曖昧にするためのエンコーダ・デコーダモデルを提案する。
GERBILベンチマークでは、EntQAと比較して、エンド・ツー・エンドのエンティティリンクが+1.5%改善されている。
論文 参考訳(メタデータ) (2024-04-02T04:27:54Z) - A Read-and-Select Framework for Zero-shot Entity Linking [33.15662306409253]
本稿では、エンティティの曖昧さの主成分をモデル化し、リード・アンド・セレクト(ReS)フレームワークを提案する。
提案手法は,確立されたゼロショットエンティティリンクデータセットであるZESHELに対して,2.55%のマイクロ平均精度向上を実現している。
論文 参考訳(メタデータ) (2023-10-19T04:08:10Z) - NASTyLinker: NIL-Aware Scalable Transformer-based Entity Linker [2.3605348648054463]
我々は,NIL-entityを意識したELアプローチを導入し,既知のエンティティのリンク性能を維持しつつ,対応する参照クラスタを生成する。
NIL-entities に対して EL を評価するために明示的に構築されたデータセットである NILK 上で NASTyLinker の有効性と拡張性を示す。
論文 参考訳(メタデータ) (2023-03-08T08:08:57Z) - Document-Level Relation Extraction with Sentences Importance Estimation
and Focusing [52.069206266557266]
文書レベルの関係抽出(DocRE)は、複数の文の文書から2つのエンティティ間の関係を決定することを目的としている。
我々はDocREのための文重要度スコアと文集中損失を設計するSIEF(Sentence Estimation and Focusing)フレームワークを提案する。
2つのドメインの実験結果から、SIEFは全体的なパフォーマンスを改善するだけでなく、DocREモデルをより堅牢にします。
論文 参考訳(メタデータ) (2022-04-27T03:20:07Z) - Improving Candidate Retrieval with Entity Profile Generation for
Wikidata Entity Linking [76.00737707718795]
本稿では,エンティティ・プロファイリングに基づく新しい候補探索パラダイムを提案する。
我々は、このプロファイルを使用してインデックス付き検索エンジンに問い合わせ、候補エンティティを検索する。
本手法は,ウィキペディアのアンカーテキスト辞書を用いた従来の手法を補完するものである。
論文 参考訳(メタデータ) (2022-02-27T17:38:53Z) - Focus on what matters: Applying Discourse Coherence Theory to Cross
Document Coreference [22.497877069528087]
ドキュメント間でのイベントとエンティティのコア参照の解決は、候補参照の数を大幅に増加させ、完全な$n2$ペアワイズ比較を行うことを難しくする。
既存のアプローチでは、ドキュメントクラスタ内でのコア参照のみを考慮することで単純化されているが、クラスタ間のコア参照を処理できない。
我々は、談話コヒーレンス理論の洞察に基づいて、潜在的コア推論は、読者の談話焦点によって制約される。
本手法は,ECB+,ガン・バイオレンス,フットボール・コアス,クロスドメイン・クロスドキュメント・コアス・コーパスにおけるイベントとエンティティの両面での最先端の成果を達成する。
論文 参考訳(メタデータ) (2021-10-11T15:41:47Z) - Injecting Knowledge Base Information into End-to-End Joint Entity and
Relation Extraction and Coreference Resolution [13.973471173349072]
我々は、教師なしエンティティリンクに基づいて、そのようなIEモデルの知識ベース(KB)から情報を注入する方法を研究する。
使用済みKBエンティティ表現は、(i)ハイパーリンクテキスト文書(Wikipedia)または(ii)知識グラフ(Wikidata)から学習される。
論文 参考訳(メタデータ) (2021-07-05T21:49:02Z) - Autoregressive Entity Retrieval [55.38027440347138]
エンティティは、知識の表現と集約の方法の中心にあります。
クエリが与えられたエンティティを検索できることは、エンティティリンクやオープンドメインの質問応答のような知識集約的なタスクに基本となる。
本稿では,自己回帰方式でトークン・バイ・トークンを左から右に生成し,エンティティを検索する最初のシステムであるGENREを提案する。
論文 参考訳(メタデータ) (2020-10-02T10:13:31Z) - Entity Linking via Dual and Cross-Attention Encoders [16.23946458604865]
同一空間における参照やエンティティ表現を学習するデュアルエンコーダエンティティ検索システムを提案する。
次に、ターゲット参照と候補エンティティのそれぞれに対して、クロスアテンションエンコーダを使用してエンティティをリランクする。
TACKBP-2010データセットでは,92.05%の精度で最先端の結果が得られた。
論文 参考訳(メタデータ) (2020-04-07T17:28:28Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。