Pattern capacity of a single quantum perceptron
- URL: http://arxiv.org/abs/2112.10115v2
- Date: Mon, 27 Dec 2021 17:46:28 GMT
- Title: Pattern capacity of a single quantum perceptron
- Authors: Fabio Benatti, Giovanni Gramegna, Stefano Mancini
- Abstract summary: Recent developments in Quantum Machine Learning have seen the introduction of several models to generalize the classical perceptron to the quantum regime.
Here we use a statistical physics approach to compute the pattern capacity of a particular model of quantum perceptron realized by means of a continuous variable quantum system.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Recent developments in Quantum Machine Learning have seen the introduction of
several models to generalize the classical perceptron to the quantum regime.
The capabilities of these quantum models need to be determined precisely in
order to establish if a quantum advantage is achievable. Here we use a
statistical physics approach to compute the pattern capacity of a particular
model of quantum perceptron realized by means of a continuous variable quantum
system.
Related papers
- Single-shot quantum machine learning [0.3277163122167433]
We analyze when quantum learning models can produce predictions in a near-deterministic way.
We show that the degree to which a quantum learning model is near-deterministic is constrained by the distinguishability of the embedded quantum states.
We conclude by showing that quantum learning models cannot be single-shot in a generic way and trainable at the same time.
arXiv Detail & Related papers (2024-06-19T20:17:18Z) - Quantum data learning for quantum simulations in high-energy physics [55.41644538483948]
We explore the applicability of quantum-data learning to practical problems in high-energy physics.
We make use of ansatz based on quantum convolutional neural networks and numerically show that it is capable of recognizing quantum phases of ground states.
The observation of non-trivial learning properties demonstrated in these benchmarks will motivate further exploration of the quantum-data learning architecture in high-energy physics.
arXiv Detail & Related papers (2023-06-29T18:00:01Z) - Universality of critical dynamics with finite entanglement [68.8204255655161]
We study how low-energy dynamics of quantum systems near criticality are modified by finite entanglement.
Our result establishes the precise role played by entanglement in time-dependent critical phenomena.
arXiv Detail & Related papers (2023-01-23T19:23:54Z) - Effective information bounds in modified quantum mechanics [0.03492633112489883]
We show that quantum systems undergo corrections to the quantum speed limit which, in turn, imply the modification of the Heisenberg limit for parameter estimation.
For some nonlocal models inspired by quantum gravity, the bounds are found to oscillate in time, an effect that could be tested in future high-precision quantum experiments.
arXiv Detail & Related papers (2022-11-16T21:37:04Z) - Classical surrogates for quantum learning models [0.7734726150561088]
We introduce the concept of a classical surrogate, a classical model which can be efficiently obtained from a trained quantum learning model.
We show that large classes of well-analyzed re-uploading models have a classical surrogate.
arXiv Detail & Related papers (2022-06-23T14:37:02Z) - Theory of Quantum Generative Learning Models with Maximum Mean
Discrepancy [67.02951777522547]
We study learnability of quantum circuit Born machines (QCBMs) and quantum generative adversarial networks (QGANs)
We first analyze the generalization ability of QCBMs and identify their superiorities when the quantum devices can directly access the target distribution.
Next, we prove how the generalization error bound of QGANs depends on the employed Ansatz, the number of qudits, and input states.
arXiv Detail & Related papers (2022-05-10T08:05:59Z) - Efficient criteria of quantumness for a large system of qubits [58.720142291102135]
We discuss the dimensionless combinations of basic parameters of large, partially quantum coherent systems.
Based on analytical and numerical calculations, we suggest one such number for a system of qubits undergoing adiabatic evolution.
arXiv Detail & Related papers (2021-08-30T23:50:05Z) - Preparing random states and benchmarking with many-body quantum chaos [48.044162981804526]
We show how to predict and experimentally observe the emergence of random state ensembles naturally under time-independent Hamiltonian dynamics.
The observed random ensembles emerge from projective measurements and are intimately linked to universal correlations built up between subsystems of a larger quantum system.
Our work has implications for understanding randomness in quantum dynamics, and enables applications of this concept in a wider context.
arXiv Detail & Related papers (2021-03-05T08:32:43Z) - Information Scrambling in Computationally Complex Quantum Circuits [56.22772134614514]
We experimentally investigate the dynamics of quantum scrambling on a 53-qubit quantum processor.
We show that while operator spreading is captured by an efficient classical model, operator entanglement requires exponentially scaled computational resources to simulate.
arXiv Detail & Related papers (2021-01-21T22:18:49Z) - On quantum ensembles of quantum classifiers [0.0]
Quantum machine learning seeks to exploit the underlying nature of a quantum computer to enhance machine learning techniques.
A specific implementation of the quantum ensemble of quantum classifiers, called the accuracy-weighted quantum ensemble, can be fully dequantised.
On the other hand, the general quantum ensemble framework is shown to contain the well-known Deutsch-Jozsa algorithm that notably provides a quantum speedup.
arXiv Detail & Related papers (2020-01-29T13:46:16Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.