AIP: Adversarial Iterative Pruning Based on Knowledge Transfer for
Convolutional Neural Networks
- URL: http://arxiv.org/abs/2108.13591v1
- Date: Tue, 31 Aug 2021 02:38:36 GMT
- Title: AIP: Adversarial Iterative Pruning Based on Knowledge Transfer for
Convolutional Neural Networks
- Authors: Jingfei Chang, Yang Lu, Ping Xue, Yiqun Xu and Zhen Wei
- Abstract summary: convolutional neural networks (CNNs) take a fair amount of computation cost.
Current pruning methods can compress CNNs with little performance drop, but when the pruning ratio increases, the accuracy loss is more serious.
We propose a novel adversarial iterative pruning method (AIP) for CNNs based on knowledge transfer.
- Score: 7.147985297123097
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: With the increase of structure complexity, convolutional neural networks
(CNNs) take a fair amount of computation cost. Meanwhile, existing research
reveals the salient parameter redundancy in CNNs. The current pruning methods
can compress CNNs with little performance drop, but when the pruning ratio
increases, the accuracy loss is more serious. Moreover, some iterative pruning
methods are difficult to accurately identify and delete unimportant parameters
due to the accuracy drop during pruning. We propose a novel adversarial
iterative pruning method (AIP) for CNNs based on knowledge transfer. The
original network is regarded as the teacher while the compressed network is the
student. We apply attention maps and output features to transfer information
from the teacher to the student. Then, a shallow fully-connected network is
designed as the discriminator to allow the output of two networks to play an
adversarial game, thereby it can quickly recover the pruned accuracy among
pruning intervals. Finally, an iterative pruning scheme based on the importance
of channels is proposed. We conduct extensive experiments on the image
classification tasks CIFAR-10, CIFAR-100, and ILSVRC-2012 to verify our pruning
method can achieve efficient compression for CNNs even without accuracy loss.
On the ILSVRC-2012, when removing 36.78% parameters and 45.55% floating-point
operations (FLOPs) of ResNet-18, the Top-1 accuracy drop are only 0.66%. Our
method is superior to some state-of-the-art pruning schemes in terms of
compressing rate and accuracy. Moreover, we further demonstrate that AIP has
good generalization on the object detection task PASCAL VOC.
Related papers
- Instant Complexity Reduction in CNNs using Locality-Sensitive Hashing [50.79602839359522]
We propose HASTE (Hashing for Tractable Efficiency), a parameter-free and data-free module that acts as a plug-and-play replacement for any regular convolution module.
We are able to drastically compress latent feature maps without sacrificing much accuracy by using locality-sensitive hashing (LSH)
In particular, we are able to instantly drop 46.72% of FLOPs while only losing 1.25% accuracy by just swapping the convolution modules in a ResNet34 on CIFAR-10 for our HASTE module.
arXiv Detail & Related papers (2023-09-29T13:09:40Z) - Can pruning improve certified robustness of neural networks? [106.03070538582222]
We show that neural network pruning can improve empirical robustness of deep neural networks (NNs)
Our experiments show that by appropriately pruning an NN, its certified accuracy can be boosted up to 8.2% under standard training.
We additionally observe the existence of certified lottery tickets that can match both standard and certified robust accuracies of the original dense models.
arXiv Detail & Related papers (2022-06-15T05:48:51Z) - SAR Despeckling Using Overcomplete Convolutional Networks [53.99620005035804]
despeckling is an important problem in remote sensing as speckle degrades SAR images.
Recent studies show that convolutional neural networks(CNNs) outperform classical despeckling methods.
This study employs an overcomplete CNN architecture to focus on learning low-level features by restricting the receptive field.
We show that the proposed network improves despeckling performance compared to recent despeckling methods on synthetic and real SAR images.
arXiv Detail & Related papers (2022-05-31T15:55:37Z) - A Passive Similarity based CNN Filter Pruning for Efficient Acoustic
Scene Classification [23.661189257759535]
We present a method to develop low-complexity convolutional neural networks (CNNs) for acoustic scene classification (ASC)
We propose a passive filter pruning framework, where a few convolutional filters from the CNNs are eliminated to yield compressed CNNs.
The proposed method is simple, reduces computations per inference by 27%, with 25% fewer parameters, with less than 1% drop in accuracy.
arXiv Detail & Related papers (2022-03-29T17:00:06Z) - An Experimental Study of the Impact of Pre-training on the Pruning of a
Convolutional Neural Network [0.0]
In recent years, deep neural networks have known a wide success in various application domains.
Deep neural networks usually involve a large number of parameters, which correspond to the weights of the network.
The pruning methods notably attempt to reduce the size of the parameter set, by identifying and removing the irrelevant weights.
arXiv Detail & Related papers (2021-12-15T16:02:15Z) - Deep Structured Instance Graph for Distilling Object Detectors [82.16270736573176]
We present a simple knowledge structure to exploit and encode information inside the detection system to facilitate detector knowledge distillation.
We achieve new state-of-the-art results on the challenging COCO object detection task with diverse student-teacher pairs on both one- and two-stage detectors.
arXiv Detail & Related papers (2021-09-27T08:26:00Z) - ACP: Automatic Channel Pruning via Clustering and Swarm Intelligence
Optimization for CNN [6.662639002101124]
convolutional neural network (CNN) gets deeper and wider in recent years.
Existing magnitude-based pruning methods are efficient, but the performance of the compressed network is unpredictable.
We propose a novel automatic channel pruning method (ACP)
ACP is evaluated against several state-of-the-art CNNs on three different classification datasets.
arXiv Detail & Related papers (2021-01-16T08:56:38Z) - UCP: Uniform Channel Pruning for Deep Convolutional Neural Networks
Compression and Acceleration [24.42067007684169]
We propose a novel uniform channel pruning (UCP) method to prune deep CNN.
The unimportant channels, including convolutional kernels related to them, are pruned directly.
We verify our method on CIFAR-10, CIFAR-100 and ILSVRC-2012 for image classification.
arXiv Detail & Related papers (2020-10-03T01:51:06Z) - RIFLE: Backpropagation in Depth for Deep Transfer Learning through
Re-Initializing the Fully-connected LayEr [60.07531696857743]
Fine-tuning the deep convolution neural network(CNN) using a pre-trained model helps transfer knowledge learned from larger datasets to the target task.
We propose RIFLE - a strategy that deepens backpropagation in transfer learning settings.
RIFLE brings meaningful updates to the weights of deep CNN layers and improves low-level feature learning.
arXiv Detail & Related papers (2020-07-07T11:27:43Z) - EagleEye: Fast Sub-net Evaluation for Efficient Neural Network Pruning [82.54669314604097]
EagleEye is a simple yet efficient evaluation component based on adaptive batch normalization.
It unveils a strong correlation between different pruned structures and their final settled accuracy.
This module is also general to plug-in and improve some existing pruning algorithms.
arXiv Detail & Related papers (2020-07-06T01:32:31Z) - Gradual Channel Pruning while Training using Feature Relevance Scores
for Convolutional Neural Networks [6.534515590778012]
Pruning is one of the predominant approaches used for deep network compression.
We present a simple-yet-effective gradual channel pruning while training methodology using a novel data-driven metric.
We demonstrate the effectiveness of the proposed methodology on architectures such as VGG and ResNet.
arXiv Detail & Related papers (2020-02-23T17:56:18Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.