Strongly bound fermion pairs on a ring: a composite-boson approach
- URL: http://arxiv.org/abs/2108.13806v2
- Date: Wed, 5 Jan 2022 16:22:45 GMT
- Title: Strongly bound fermion pairs on a ring: a composite-boson approach
- Authors: E. Cuestas and C. Cormick
- Abstract summary: "Coboson formalism" is a powerful tool to tackle compositeness effects.
A key element of this theory is an ansatz for the ground state of N pairs.
We show that this ansatz can fail in one-dimensional systems which fulfill the conditions expected to make the ansatz valid.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Particles made of two fermions can in many cases be treated as elementary
bosons, but the conditions for this treatment to be valid are nontrivial. The
so-called "coboson formalism" is a powerful tool to tackle compositeness
effects relevant for instance for exciton physics and ultracold atomic dimers.
A key element of this theory is an ansatz for the ground state of N pairs,
built from the single-pair ground state combined with the exclusion principle.
We show that this ansatz can fail in one-dimensional systems which fulfill the
conditions expected to make the ansatz valid. Nevertheless, we also explain how
coboson theory can recover the correct ground state. Thus, our work highlights
limitations and strengths of the formalism and leads to a better treatment of
composite bosons.
Related papers
- Extendibility of fermionic states and rigorous ground state approximations of interacting fermionic systems [0.3277163122167433]
We provide rigorous guarantees on how well fermionic Gaussian product states can approximate the true ground state.
Our result can be on the one hand seen as a extendibility result of fermionic quantum states.
On the other hand, this is a non-symmetric de-Finetti theorem for fermions, as the direct fermionic analog of a theorem due to Brandao and Harrow.
arXiv Detail & Related papers (2024-10-10T19:19:35Z) - Spin-coupled molecular orbitals: chemical intuition meets quantum
chemistry [0.8397730500554048]
We introduce a generalised MO theory that includes spin-coupled radical states.
Our theory provides a model for chemical bonding that is both chemically intuitive and qualitatively accurate when combined with ab initio theory.
Although exploitation of our theory presents significant challenges for classical computing, the predictable structure of spin-coupled states is ideally suited to algorithms that exploit quantum computers.
arXiv Detail & Related papers (2024-02-13T23:57:04Z) - Composite-boson formalism applied to strongly bound fermion pairs in a
one-dimensional trap [0.0]
We solve the problem of two fermion pairs numerically using the so-called ''coboson formalism''
This allows us to explore the strongly bound regime, approaching the limit of infinite attraction in which the composite particles behave as hard-core bosons.
arXiv Detail & Related papers (2023-01-09T19:20:00Z) - Jordan-Wigner transformation and qubits with nontrivial exchange rule [91.3755431537592]
Well-known (spinless) fermionic qubits may need more subtle consideration in comparison with usual (spinful) fermions.
considered method has some relation with construction of super-spaces, but it has some differences with standard definition of supersymmety sometimes used for generalizations of qubit model.
arXiv Detail & Related papers (2021-03-08T09:31:03Z) - Non-equilibrium stationary states of quantum non-Hermitian lattice
models [68.8204255655161]
We show how generic non-Hermitian tight-binding lattice models can be realized in an unconditional, quantum-mechanically consistent manner.
We focus on the quantum steady states of such models for both fermionic and bosonic systems.
arXiv Detail & Related papers (2021-03-02T18:56:44Z) - Quantum Operations in an Information Theory for Fermions [0.0]
We introduce the physically allowed quantum operations, in congruence with the parity super-selection rule, that map the set of allowed fermionic states onto itself.
We explicitly show the equivalence between these three representations of fermionic quantum operations.
arXiv Detail & Related papers (2021-02-17T23:41:05Z) - Polaron Interactions and Bipolarons in One-Dimensional Bose Gases in the
Strong Coupling Regime [0.0]
We present a detailed study of heavy polarons in a one-dimensional Bose gas by formulating a non-perturbative theory.
We develop an analytic approach for weak boson-boson interactions and arbitrarily strong impurity-boson couplings.
arXiv Detail & Related papers (2021-01-28T13:50:03Z) - Mesoscopic quantum superposition states of weakly-coupled matter-wave
solitons [58.720142291102135]
We establish quantum features of an atomic soliton Josephson junction (SJJ) device.
We show that the SJJ-model in quantum domain exhibits unusual features due to its effective nonlinear strength proportional to the square of total particle number.
We have shown that the obtained quantum state is more resistant to few particle losses from the condensates if tiny components of entangled Fock states are present.
arXiv Detail & Related papers (2020-11-26T09:26:19Z) - Sub-bosonic (deformed) ladder operators [62.997667081978825]
We present a class of deformed creation and annihilation operators that originates from a rigorous notion of fuzziness.
This leads to deformed, sub-bosonic commutation relations inducing a simple algebraic structure with modified eigenenergies and Fock states.
In addition, we investigate possible consequences of the introduced formalism in quantum field theories, as for instance, deviations from linearity in the dispersion relation for free quasibosons.
arXiv Detail & Related papers (2020-09-10T20:53:58Z) - A multiconfigurational study of the negatively charged nitrogen-vacancy
center in diamond [55.58269472099399]
Deep defects in wide band gap semiconductors have emerged as leading qubit candidates for realizing quantum sensing and information applications.
Here we show that unlike single-particle treatments, the multiconfigurational quantum chemistry methods, traditionally reserved for atoms/molecules, accurately describe the many-body characteristics of the electronic states of these defect centers.
arXiv Detail & Related papers (2020-08-24T01:49:54Z) - Dynamical solitons and boson fractionalization in cold-atom topological
insulators [110.83289076967895]
We study the $mathbbZ$ Bose-Hubbard model at incommensurate densities.
We show how defects in the $mathbbZ$ field can appear in the ground state, connecting different sectors.
Using a pumping argument, we show that it survives also for finite interactions.
arXiv Detail & Related papers (2020-03-24T17:31:34Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.