論文の概要: Effective Sequence-to-Sequence Dialogue State Tracking
- arxiv url: http://arxiv.org/abs/2108.13990v1
- Date: Tue, 31 Aug 2021 17:27:59 GMT
- ステータス: 処理完了
- システム内更新日: 2021-09-01 15:02:37.832164
- Title: Effective Sequence-to-Sequence Dialogue State Tracking
- Title(参考訳): 効果的なシーケンス間対話状態追跡
- Authors: Jeffrey Zhao, Mahdis Mahdieh, Ye Zhang, Yuan Cao, Yonghui Wu
- Abstract要約: 事前学習対象の選択は、状態追跡品質に有意な違いをもたらすことを示す。
また、状態追跡モデルに対して、テキスト要約のための予測に基づく事前学習目的であるPegasusについても検討する。
その結果,対話状態の追跡には,遠隔要約タスクの事前学習が驚くほど有効であることが判明した。
- 参考スコア(独自算出の注目度): 22.606650177804966
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Sequence-to-sequence models have been applied to a wide variety of NLP tasks,
but how to properly use them for dialogue state tracking has not been
systematically investigated. In this paper, we study this problem from the
perspectives of pre-training objectives as well as the formats of context
representations. We demonstrate that the choice of pre-training objective makes
a significant difference to the state tracking quality. In particular, we find
that masked span prediction is more effective than auto-regressive language
modeling. We also explore using Pegasus, a span prediction-based pre-training
objective for text summarization, for the state tracking model. We found that
pre-training for the seemingly distant summarization task works surprisingly
well for dialogue state tracking. In addition, we found that while recurrent
state context representation works also reasonably well, the model may have a
hard time recovering from earlier mistakes. We conducted experiments on the
MultiWOZ 2.1-2.4 data sets with consistent observations.
- Abstract(参考訳): シーケンス・トゥ・シーケンスモデルは様々なnlpタスクに適用されてきたが、対話状態追跡にどのように適切に利用するかは体系的に検討されていない。
本稿では,事前学習対象と文脈表現の形式の観点から,この問題を考察する。
我々は,事前学習目標の選択が状態追跡品質に重大な影響を与えることを実証する。
特に,マスク付きスパン予測は自動回帰言語モデリングよりも効果的であることがわかった。
また、状態追跡モデルにおけるテキスト要約のための予測に基づく事前学習目的であるPegasusについても検討する。
対話状態の追跡には,一見遠くの要約タスクの事前学習が驚くほど有効であることがわかった。
さらに、リカレント状態のコンテキスト表現も合理的に機能する一方で、モデルが以前のミスから回復するのに苦労していることも分かりました。
我々は一貫した観測でMultiWOZ 2.1-2.4データセットの実験を行った。
関連論文リスト
- DeTra: A Unified Model for Object Detection and Trajectory Forecasting [68.85128937305697]
提案手法は,2つのタスクの結合を軌道修正問題として定式化する。
この統合タスクに対処するために、オブジェクトの存在, ポーズ, マルチモーダルな将来の振る舞いを推測する精細化変換器を設計する。
実験では、我々のモデルはArgoverse 2 Sensor and Openデータセットの最先端性よりも優れています。
論文 参考訳(メタデータ) (2024-06-06T18:12:04Z) - Opening the Black Box: Analyzing Attention Weights and Hidden States in
Pre-trained Language Models for Non-language Tasks [0.8889304968879164]
階層構造を持つ制約付き算術問題に対して,事前学習した言語モデルを適用し,その注意重みと隠れ状態を分析する。
この調査は、人間の問題解決戦略と同様に、階層的な問題を適度に構造化した方法で解決するモデルによって、有望な結果を明らかにしている。
注意分析により、モデルがListOpsデータセットの長いシーケンスに一般化できると仮定できる。
論文 参考訳(メタデータ) (2023-06-21T11:48:07Z) - Inverse Dynamics Pretraining Learns Good Representations for Multitask
Imitation [66.86987509942607]
このようなパラダイムを模倣学習でどのように行うべきかを評価する。
本稿では,事前学習コーパスがマルチタスクのデモンストレーションから成り立つ環境について考察する。
逆動力学モデリングはこの設定に適していると主張する。
論文 参考訳(メタデータ) (2023-05-26T14:40:46Z) - STOA-VLP: Spatial-Temporal Modeling of Object and Action for
Video-Language Pre-training [30.16501510589718]
本研究では,空間的・時間的次元にまたがる対象情報と行動情報を協調的にモデル化する事前学習フレームワークを提案する。
我々は,ビデオ言語モデルの事前学習プロセスに,両方の情報をよりうまく組み込むための2つの補助タスクを設計する。
論文 参考訳(メタデータ) (2023-02-20T03:13:45Z) - Towards Out-of-Distribution Sequential Event Prediction: A Causal
Treatment [72.50906475214457]
シーケンシャルなイベント予測の目標は、一連の歴史的なイベントに基づいて次のイベントを見積もることである。
実際には、次のイベント予測モデルは、一度に収集されたシーケンシャルなデータで訓練される。
文脈固有の表現を学習するための階層的な分岐構造を持つフレームワークを提案する。
論文 参考訳(メタデータ) (2022-10-24T07:54:13Z) - Leveraging Pre-Trained Language Models to Streamline Natural Language
Interaction for Self-Tracking [25.28975864365579]
本研究では,自己追跡のための新たなNLPタスクを提案する。
このフレームワークは、合成サンプルを使用してタスクを10ショットの学習に変換するプロンプトを強化し、新しいトラッキングトピックをブートストラップする際のコールドスタート問題に対処する。
論文 参考訳(メタデータ) (2022-05-31T01:58:04Z) - A Generative Language Model for Few-shot Aspect-Based Sentiment Analysis [90.24921443175514]
我々は、アスペクト項、カテゴリを抽出し、対応する極性を予測するアスペクトベースの感情分析に焦点を当てる。
本稿では,一方向の注意を伴う生成言語モデルを用いて,抽出タスクと予測タスクをシーケンス生成タスクに再構成することを提案する。
提案手法は,従来の最先端(BERTをベースとした)の性能を,数ショットとフルショットの設定において,大きなマージンで上回ります。
論文 参考訳(メタデータ) (2022-04-11T18:31:53Z) - In-Context Learning for Few-Shot Dialogue State Tracking [55.91832381893181]
In-context (IC) Learning framework for few-shot dialogue state tracking (DST)を提案する。
大規模な事前訓練言語モデル(LM)は、テストインスタンスといくつかの注釈付き例を入力として取り、パラメータの更新なしに直接対話状態をデコードする。
これにより、LMは、新しいドメインやシナリオに適応する際の、以前の数ショットのDST作業と比べて、より柔軟でスケーラブルになります。
論文 参考訳(メタデータ) (2022-03-16T11:58:24Z) - Evaluating Document Coherence Modelling [37.287725949616934]
英語文侵入検出タスクにおけるプリトレーニング済みLMの広い範囲の性能を検討する。
実験の結果,事前学習したLMはドメイン内評価において顕著に機能するが,クロスドメイン設定の大幅な低下を経験することがわかった。
論文 参考訳(メタデータ) (2021-03-18T10:05:06Z) - Infusing Finetuning with Semantic Dependencies [62.37697048781823]
シンタックスとは異なり、セマンティクスは今日の事前訓練モデルによって表面化されないことを示す。
次に、畳み込みグラフエンコーダを使用して、タスク固有の微調整にセマンティック解析を明示的に組み込む。
論文 参考訳(メタデータ) (2020-12-10T01:27:24Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。