Scalable Spatiotemporally Varying Coefficient Modelling with Bayesian Kernelized Tensor Regression
- URL: http://arxiv.org/abs/2109.00046v4
- Date: Sat, 13 Apr 2024 18:25:28 GMT
- Title: Scalable Spatiotemporally Varying Coefficient Modelling with Bayesian Kernelized Tensor Regression
- Authors: Mengying Lei, Aurelie Labbe, Lijun Sun,
- Abstract summary: Kernelized tensor Regression (BKTR) can be considered a new and scalable approach to modeling processes with low-rank cotemporal structure.
We conduct extensive experiments on both synthetic and real-world data sets, and our results confirm the superior performance and efficiency of BKTR for model estimation and inference.
- Score: 17.158289775348063
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: As a regression technique in spatial statistics, the spatiotemporally varying coefficient model (STVC) is an important tool for discovering nonstationary and interpretable response-covariate associations over both space and time. However, it is difficult to apply STVC for large-scale spatiotemporal analyses due to its high computational cost. To address this challenge, we summarize the spatiotemporally varying coefficients using a third-order tensor structure and propose to reformulate the spatiotemporally varying coefficient model as a special low-rank tensor regression problem. The low-rank decomposition can effectively model the global patterns of large data sets with a substantially reduced number of parameters. To further incorporate the local spatiotemporal dependencies, we use Gaussian process (GP) priors on the spatial and temporal factor matrices. We refer to the overall framework as Bayesian Kernelized Tensor Regression (BKTR), and kernelized tensor factorization can be considered a new and scalable approach to modeling multivariate spatiotemporal processes with a low-rank covariance structure. For model inference, we develop an efficient Markov chain Monte Carlo (MCMC) algorithm, which uses Gibbs sampling to update factor matrices and slice sampling to update kernel hyperparameters. We conduct extensive experiments on both synthetic and real-world data sets, and our results confirm the superior performance and efficiency of BKTR for model estimation and parameter inference.
Related papers
- Computational and Statistical Guarantees for Tensor-on-Tensor Regression with Tensor Train Decomposition [27.29463801531576]
We study the theoretical and algorithmic aspects of the TT-based ToT regression model.
We propose two algorithms to efficiently find solutions to constrained error bounds.
We establish the linear convergence rate of both IHT and RGD.
arXiv Detail & Related papers (2024-06-10T03:51:38Z) - Online Variational Sequential Monte Carlo [49.97673761305336]
We build upon the variational sequential Monte Carlo (VSMC) method, which provides computationally efficient and accurate model parameter estimation and Bayesian latent-state inference.
Online VSMC is capable of performing efficiently, entirely on-the-fly, both parameter estimation and particle proposal adaptation.
arXiv Detail & Related papers (2023-12-19T21:45:38Z) - Bayesian Complementary Kernelized Learning for Multidimensional
Spatiotemporal Data [11.763229353978321]
We propose a new statistical framework -- Complementary Complementary Kernelized Learning (BCKL)
BCKL offers superior performance in providing accurate posterior mean and high-quality uncertainty estimates.
arXiv Detail & Related papers (2022-08-21T22:38:54Z) - Adaptive LASSO estimation for functional hidden dynamic geostatistical
model [69.10717733870575]
We propose a novel model selection algorithm based on a penalized maximum likelihood estimator (PMLE) for functional hiddenstatistical models (f-HD)
The algorithm is based on iterative optimisation and uses an adaptive least absolute shrinkage and selector operator (GMSOLAS) penalty function, wherein the weights are obtained by the unpenalised f-HD maximum-likelihood estimators.
arXiv Detail & Related papers (2022-08-10T19:17:45Z) - Factorized Structured Regression for Large-Scale Varying Coefficient
Models [1.3282354370017082]
We propose Factorized Structured Regression (FaStR) for scalable varying coefficient models.
FaStR overcomes limitations of general regression models for large-scale data by combining structured additive regression and factorization approaches in a neural network-based model implementation.
Empirical results confirm that the estimation of varying coefficients of our approach is on par with state-of-the-art regression techniques.
arXiv Detail & Related papers (2022-05-25T23:12:13Z) - Efficient hierarchical Bayesian inference for spatio-temporal regression
models in neuroimaging [6.512092052306553]
Examples include M/EEG inverse problems, encoding neural models for task-based fMRI analyses, and temperature monitoring schemes.
We devise a novel hierarchical flexible Bayesian framework within which the intrinsic-temporal dynamics of model parameters and noise are modeled.
arXiv Detail & Related papers (2021-11-02T15:50:01Z) - Closed-form Continuous-Depth Models [99.40335716948101]
Continuous-depth neural models rely on advanced numerical differential equation solvers.
We present a new family of models, termed Closed-form Continuous-depth (CfC) networks, that are simple to describe and at least one order of magnitude faster.
arXiv Detail & Related papers (2021-06-25T22:08:51Z) - Anomaly Detection of Time Series with Smoothness-Inducing Sequential
Variational Auto-Encoder [59.69303945834122]
We present a Smoothness-Inducing Sequential Variational Auto-Encoder (SISVAE) model for robust estimation and anomaly detection of time series.
Our model parameterizes mean and variance for each time-stamp with flexible neural networks.
We show the effectiveness of our model on both synthetic datasets and public real-world benchmarks.
arXiv Detail & Related papers (2021-02-02T06:15:15Z) - Multiplicative noise and heavy tails in stochastic optimization [62.993432503309485]
empirical optimization is central to modern machine learning, but its role in its success is still unclear.
We show that it commonly arises in parameters of discrete multiplicative noise due to variance.
A detailed analysis is conducted in which we describe on key factors, including recent step size, and data, all exhibit similar results on state-of-the-art neural network models.
arXiv Detail & Related papers (2020-06-11T09:58:01Z) - Convolutional Tensor-Train LSTM for Spatio-temporal Learning [116.24172387469994]
We propose a higher-order LSTM model that can efficiently learn long-term correlations in the video sequence.
This is accomplished through a novel tensor train module that performs prediction by combining convolutional features across time.
Our results achieve state-of-the-art performance-art in a wide range of applications and datasets.
arXiv Detail & Related papers (2020-02-21T05:00:01Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.