Task-Oriented Communication for Multi-Device Cooperative Edge Inference
- URL: http://arxiv.org/abs/2109.00172v3
- Date: Tue, 12 Sep 2023 11:10:09 GMT
- Title: Task-Oriented Communication for Multi-Device Cooperative Edge Inference
- Authors: Jiawei Shao, Yuyi Mao, Jun Zhang
- Abstract summary: cooperative edge inference can overcome the limited sensing capability of a single device, but it substantially increases the communication overhead and may incur excessive latency.
We propose a learning-based communication scheme that optimize local feature extraction and distributed feature encoding in a task-oriented manner.
- Score: 14.249444124834719
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This paper investigates task-oriented communication for multi-device
cooperative edge inference, where a group of distributed low-end edge devices
transmit the extracted features of local samples to a powerful edge server for
inference. While cooperative edge inference can overcome the limited sensing
capability of a single device, it substantially increases the communication
overhead and may incur excessive latency. To enable low-latency cooperative
inference, we propose a learning-based communication scheme that optimizes
local feature extraction and distributed feature encoding in a task-oriented
manner, i.e., to remove data redundancy and transmit information that is
essential for the downstream inference task rather than reconstructing the data
samples at the edge server. Specifically, we leverage an information bottleneck
(IB) principle to extract the task-relevant feature at each edge device and
adopt a distributed information bottleneck (DIB) framework to formalize a
single-letter characterization of the optimal rate-relevance tradeoff for
distributed feature encoding. To admit flexible control of the communication
overhead, we extend the DIB framework to a distributed deterministic
information bottleneck (DDIB) objective that explicitly incorporates the
representational costs of the encoded features. As the IB-based objectives are
computationally prohibitive for high-dimensional data, we adopt variational
approximations to make the optimization problems tractable. To compensate the
potential performance loss due to the variational approximations, we also
develop a selective retransmission (SR) mechanism to identify the redundancy in
the encoded features of multiple edge devices to attain additional
communication overhead reduction. Extensive experiments evidence that the
proposed task-oriented communication scheme achieves a better rate-relevance
tradeoff than baseline methods.
Related papers
- Edge-device Collaborative Computing for Multi-view Classification [9.047284788663776]
We explore collaborative inference at the edge, in which edge nodes and end devices share correlated data and the inference computational burden.
We introduce selective schemes that decrease bandwidth resource consumption by effectively reducing data redundancy.
Experimental results highlight that selective collaborative schemes can achieve different trade-offs between the above performance metrics.
arXiv Detail & Related papers (2024-09-24T11:07:33Z) - Tackling Distribution Shifts in Task-Oriented Communication with Information Bottleneck [28.661084093544684]
We propose a novel approach based on the information bottleneck (IB) principle and invariant risk minimization (IRM) framework.
The proposed method aims to extract compact and informative features that possess high capability for effective domain-shift generalization.
We show that the proposed scheme outperforms state-of-the-art approaches and achieves a better rate-distortion tradeoff.
arXiv Detail & Related papers (2024-05-15T17:07:55Z) - Estimation Network Design framework for efficient distributed optimization [3.3148826359547514]
This paper introduces Estimation Network Design (END), a graph theoretical language for the analysis and design of distributed iterations.
END algorithms can be tuned to exploit the sparsity of specific problem instances, reducing communication overhead and minimizing redundancy.
In particular, we study the sparsity-aware version of many established methods, including ADMM, AugDGM and Push-Sum DGD.
arXiv Detail & Related papers (2024-04-23T17:59:09Z) - Analysis and Optimization of Wireless Federated Learning with Data
Heterogeneity [72.85248553787538]
This paper focuses on performance analysis and optimization for wireless FL, considering data heterogeneity, combined with wireless resource allocation.
We formulate the loss function minimization problem, under constraints on long-term energy consumption and latency, and jointly optimize client scheduling, resource allocation, and the number of local training epochs (CRE)
Experiments on real-world datasets demonstrate that the proposed algorithm outperforms other benchmarks in terms of the learning accuracy and energy consumption.
arXiv Detail & Related papers (2023-08-04T04:18:01Z) - Compressed Regression over Adaptive Networks [58.79251288443156]
We derive the performance achievable by a network of distributed agents that solve, adaptively and in the presence of communication constraints, a regression problem.
We devise an optimized allocation strategy where the parameters necessary for the optimization can be learned online by the agents.
arXiv Detail & Related papers (2023-04-07T13:41:08Z) - Task-Oriented Sensing, Computation, and Communication Integration for
Multi-Device Edge AI [108.08079323459822]
This paper studies a new multi-intelligent edge artificial-latency (AI) system, which jointly exploits the AI model split inference and integrated sensing and communication (ISAC)
We measure the inference accuracy by adopting an approximate but tractable metric, namely discriminant gain.
arXiv Detail & Related papers (2022-07-03T06:57:07Z) - Federated Learning for Energy-limited Wireless Networks: A Partial Model
Aggregation Approach [79.59560136273917]
limited communication resources, bandwidth and energy, and data heterogeneity across devices are main bottlenecks for federated learning (FL)
We first devise a novel FL framework with partial model aggregation (PMA)
The proposed PMA-FL improves 2.72% and 11.6% accuracy on two typical heterogeneous datasets.
arXiv Detail & Related papers (2022-04-20T19:09:52Z) - Learning Task-Oriented Communication for Edge Inference: An Information
Bottleneck Approach [3.983055670167878]
A low-end edge device transmits the extracted feature vector of a local data sample to a powerful edge server for processing.
It is critical to encode the data into an informative and compact representation for low-latency inference given the limited bandwidth.
We propose a learning-based communication scheme that jointly optimize feature extraction, source coding, and channel coding.
arXiv Detail & Related papers (2021-02-08T12:53:32Z) - A Compressive Sensing Approach for Federated Learning over Massive MIMO
Communication Systems [82.2513703281725]
Federated learning is a privacy-preserving approach to train a global model at a central server by collaborating with wireless devices.
We present a compressive sensing approach for federated learning over massive multiple-input multiple-output communication systems.
arXiv Detail & Related papers (2020-03-18T05:56:27Z) - Resolution Adaptive Networks for Efficient Inference [53.04907454606711]
We propose a novel Resolution Adaptive Network (RANet), which is inspired by the intuition that low-resolution representations are sufficient for classifying "easy" inputs.
In RANet, the input images are first routed to a lightweight sub-network that efficiently extracts low-resolution representations.
High-resolution paths in the network maintain the capability to recognize the "hard" samples.
arXiv Detail & Related papers (2020-03-16T16:54:36Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.