Analysis and Optimization of Wireless Federated Learning with Data
Heterogeneity
- URL: http://arxiv.org/abs/2308.03521v1
- Date: Fri, 4 Aug 2023 04:18:01 GMT
- Title: Analysis and Optimization of Wireless Federated Learning with Data
Heterogeneity
- Authors: Xuefeng Han, Jun Li, Wen Chen, Zhen Mei, Kang Wei, Ming Ding,
H.Vincent Poor
- Abstract summary: This paper focuses on performance analysis and optimization for wireless FL, considering data heterogeneity, combined with wireless resource allocation.
We formulate the loss function minimization problem, under constraints on long-term energy consumption and latency, and jointly optimize client scheduling, resource allocation, and the number of local training epochs (CRE)
Experiments on real-world datasets demonstrate that the proposed algorithm outperforms other benchmarks in terms of the learning accuracy and energy consumption.
- Score: 72.85248553787538
- License: http://creativecommons.org/publicdomain/zero/1.0/
- Abstract: With the rapid proliferation of smart mobile devices, federated learning (FL)
has been widely considered for application in wireless networks for distributed
model training. However, data heterogeneity, e.g., non-independently
identically distributions and different sizes of training data among clients,
poses major challenges to wireless FL. Limited communication resources
complicate the implementation of fair scheduling which is required for training
on heterogeneous data, and further deteriorate the overall performance. To
address this issue, this paper focuses on performance analysis and optimization
for wireless FL, considering data heterogeneity, combined with wireless
resource allocation. Specifically, we first develop a closed-form expression
for an upper bound on the FL loss function, with a particular emphasis on data
heterogeneity described by a dataset size vector and a data divergence vector.
Then we formulate the loss function minimization problem, under constraints on
long-term energy consumption and latency, and jointly optimize client
scheduling, resource allocation, and the number of local training epochs (CRE).
Next, via the Lyapunov drift technique, we transform the CRE optimization
problem into a series of tractable problems. Extensive experiments on
real-world datasets demonstrate that the proposed algorithm outperforms other
benchmarks in terms of the learning accuracy and energy consumption.
Related papers
- Filling the Missing: Exploring Generative AI for Enhanced Federated
Learning over Heterogeneous Mobile Edge Devices [72.61177465035031]
We propose a generative AI-empowered federated learning to address these challenges by leveraging the idea of FIlling the MIssing (FIMI) portion of local data.
Experiment results demonstrate that FIMI can save up to 50% of the device-side energy to achieve the target global test accuracy.
arXiv Detail & Related papers (2023-10-21T12:07:04Z) - DYNAMITE: Dynamic Interplay of Mini-Batch Size and Aggregation Frequency
for Federated Learning with Static and Streaming Dataset [23.11152686493894]
Federated Learning (FL) is a distributed learning paradigm that can coordinate heterogeneous edge devices to perform model training without sharing private data.
This paper introduces novel analytical models and optimization algorithms that leverage the interplay between batch size and aggregation frequency to navigate the trade-offs among convergence, cost, and completion time for dynamic FL training.
arXiv Detail & Related papers (2023-10-20T08:36:12Z) - Adaptive Model Pruning and Personalization for Federated Learning over
Wireless Networks [72.59891661768177]
Federated learning (FL) enables distributed learning across edge devices while protecting data privacy.
We consider a FL framework with partial model pruning and personalization to overcome these challenges.
This framework splits the learning model into a global part with model pruning shared with all devices to learn data representations and a personalized part to be fine-tuned for a specific device.
arXiv Detail & Related papers (2023-09-04T21:10:45Z) - Dynamic Scheduling for Federated Edge Learning with Streaming Data [56.91063444859008]
We consider a Federated Edge Learning (FEEL) system where training data are randomly generated over time at a set of distributed edge devices with long-term energy constraints.
Due to limited communication resources and latency requirements, only a subset of devices is scheduled for participating in the local training process in every iteration.
arXiv Detail & Related papers (2023-05-02T07:41:16Z) - Gradient Sparsification for Efficient Wireless Federated Learning with
Differential Privacy [25.763777765222358]
Federated learning (FL) enables distributed clients to collaboratively train a machine learning model without sharing raw data with each other.
As the model size grows, the training latency due to limited transmission bandwidth and private information degrades while using differential privacy (DP) protection.
We propose sparsification empowered FL framework wireless channels, in over to improve training efficiency without sacrificing convergence performance.
arXiv Detail & Related papers (2023-04-09T05:21:15Z) - Clustered Data Sharing for Non-IID Federated Learning over Wireless
Networks [39.80420645943706]
Federated Learning (FL) is a distributed machine learning approach to leverage data from the Internet of Things (IoT)
Current FL algorithms face the challenges of non-independent and identically distributed (non-IID) data, which causes high communication costs and model accuracy declines.
We propose a clustered data sharing framework which spares the partial data from cluster heads to credible associates through device-to-device (D2D) communication.
arXiv Detail & Related papers (2023-02-17T07:11:02Z) - Communication-Efficient Device Scheduling for Federated Learning Using
Stochastic Optimization [26.559267845906746]
Time learning (FL) is a useful tool in distributed machine learning that utilizes users' local datasets in a privacy-preserving manner.
In this paper, we provide a novel convergence analysis non-efficient convergence bound algorithm.
We also develop a new selection and power allocation algorithm that minimizes a function of the convergence bound and the average communication under a power constraint.
arXiv Detail & Related papers (2022-01-19T23:25:24Z) - Local Learning Matters: Rethinking Data Heterogeneity in Federated
Learning [61.488646649045215]
Federated learning (FL) is a promising strategy for performing privacy-preserving, distributed learning with a network of clients (i.e., edge devices)
arXiv Detail & Related papers (2021-11-28T19:03:39Z) - Quasi-Global Momentum: Accelerating Decentralized Deep Learning on
Heterogeneous Data [77.88594632644347]
Decentralized training of deep learning models is a key element for enabling data privacy and on-device learning over networks.
In realistic learning scenarios, the presence of heterogeneity across different clients' local datasets poses an optimization challenge.
We propose a novel momentum-based method to mitigate this decentralized training difficulty.
arXiv Detail & Related papers (2021-02-09T11:27:14Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.