Capturing Stance Dynamics in Social Media: Open Challenges and Research
Directions
- URL: http://arxiv.org/abs/2109.00475v1
- Date: Wed, 1 Sep 2021 16:28:24 GMT
- Title: Capturing Stance Dynamics in Social Media: Open Challenges and Research
Directions
- Authors: Rabab Alkhalifa, Arkaitz Zubiaga
- Abstract summary: Social media platforms provide a goldmine for mining public opinion on issues of wide societal interest.
Opinion mining is a problem that can be operationalised by capturing and aggregating the stance of individual social media posts.
We investigate the intersection between computational linguistics and the temporal evolution of human communication in digital media.
- Score: 6.531659195805749
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Social media platforms provide a goldmine for mining public opinion on issues
of wide societal interest. Opinion mining is a problem that can be
operationalised by capturing and aggregating the stance of individual social
media posts as supporting, opposing or being neutral towards the issue at hand.
While most prior work in stance detection has investigated datasets with
limited time coverage, interest in investigating longitudinal datasets has
recently increased. Evolving dynamics in linguistic and behavioural patterns
observed in new data require in turn adapting stance detection systems to deal
with the changes. In this survey paper, we investigate the intersection between
computational linguistics and the temporal evolution of human communication in
digital media. We perform a critical review in emerging research considering
dynamics, exploring different semantic and pragmatic factors that impact
linguistic data in general, and stance particularly. We further discuss current
directions in capturing stance dynamics in social media. We organise the
challenges of dealing with stance dynamics, identify open challenges and
discuss future directions in three key dimensions: utterance, context and
influence.
Related papers
- A Survey of Stance Detection on Social Media: New Directions and Perspectives [50.27382951812502]
stance detection has emerged as a crucial subfield within affective computing.
Recent years have seen a surge of research interest in developing effective stance detection methods.
This paper provides a comprehensive survey of stance detection techniques on social media.
arXiv Detail & Related papers (2024-09-24T03:06:25Z) - Multimodal Fusion with LLMs for Engagement Prediction in Natural Conversation [70.52558242336988]
We focus on predicting engagement in dyadic interactions by scrutinizing verbal and non-verbal cues, aiming to detect signs of disinterest or confusion.
In this work, we collect a dataset featuring 34 participants engaged in casual dyadic conversations, each providing self-reported engagement ratings at the end of each conversation.
We introduce a novel fusion strategy using Large Language Models (LLMs) to integrate multiple behavior modalities into a multimodal transcript''
arXiv Detail & Related papers (2024-09-13T18:28:12Z) - Recent Advances in Hate Speech Moderation: Multimodality and the Role of Large Models [52.24001776263608]
This comprehensive survey delves into the recent strides in HS moderation.
We highlight the burgeoning role of large language models (LLMs) and large multimodal models (LMMs)
We identify existing gaps in research, particularly in the context of underrepresented languages and cultures.
arXiv Detail & Related papers (2024-01-30T03:51:44Z) - Modeling Political Orientation of Social Media Posts: An Extended
Analysis [0.0]
Developing machine learning models to characterize political polarization on online social media presents significant challenges.
These challenges mainly stem from various factors such as the lack of annotated data, presence of noise in social media datasets, and the sheer volume of data.
We introduce two methods that leverage on news media bias and post content to label social media posts.
We demonstrate that current machine learning models can exhibit improved performance in predicting political orientation of social media posts.
arXiv Detail & Related papers (2023-11-21T03:34:20Z) - Qualitative Analysis of a Graph Transformer Approach to Addressing Hate
Speech: Adapting to Dynamically Changing Content [8.393770595114763]
We offer a detailed qualitative analysis of this solution for hate speech detection in social networks.
A key insight is that the focus on reasoning about the concept of context positions us well to be able to support multi-modal analysis of online posts.
We conclude with a reflection on how the problem we are addressing relates especially well to the theme of dynamic change.
arXiv Detail & Related papers (2023-01-25T23:32:32Z) - Aggression and "hate speech" in communication of media users: analysis
of control capabilities [50.591267188664666]
Authors studied the possibilities of mutual influence of users in new media.
They found a high level of aggression and hate speech when discussing an urgent social problem - measures for COVID-19 fighting.
Results can be useful for developing media content in a modern digital environment.
arXiv Detail & Related papers (2022-08-25T15:53:32Z) - Co-Located Human-Human Interaction Analysis using Nonverbal Cues: A
Survey [71.43956423427397]
We aim to identify the nonverbal cues and computational methodologies resulting in effective performance.
This survey differs from its counterparts by involving the widest spectrum of social phenomena and interaction settings.
Some major observations are: the most often used nonverbal cue, computational method, interaction environment, and sensing approach are speaking activity, support vector machines, and meetings composed of 3-4 persons equipped with microphones and cameras, respectively.
arXiv Detail & Related papers (2022-07-20T13:37:57Z) - Didn't see that coming: a survey on non-verbal social human behavior
forecasting [47.99589136455976]
Non-verbal social human behavior forecasting has increasingly attracted the interest of the research community in recent years.
Its direct applications to human-robot interaction and socially-aware human motion generation make it a very attractive field.
We define the behavior forecasting problem for multiple interactive agents in a generic way that aims at unifying the fields of social signals prediction and human motion forecasting.
arXiv Detail & Related papers (2022-03-04T18:25:30Z) - Stance Detection on Social Media: State of the Art and Trends [5.584060970507506]
Stance detection on social media is an emerging opinion mining paradigm for various social and political applications in which sentiment analysis may be sub-optimal.
This paper surveys the work on stance detection within those communities and situates its usage within current opinion mining techniques in social media.
It presents an exhaustive review of stance detection techniques on social media, including the task definition, different types of targets in stance detection, features set used, and various machine learning approaches applied.
arXiv Detail & Related papers (2020-06-05T19:24:16Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.