Stance Detection on Social Media: State of the Art and Trends
- URL: http://arxiv.org/abs/2006.03644v5
- Date: Thu, 15 Apr 2021 12:41:20 GMT
- Title: Stance Detection on Social Media: State of the Art and Trends
- Authors: Abeer AlDayel and Walid Magdy
- Abstract summary: Stance detection on social media is an emerging opinion mining paradigm for various social and political applications in which sentiment analysis may be sub-optimal.
This paper surveys the work on stance detection within those communities and situates its usage within current opinion mining techniques in social media.
It presents an exhaustive review of stance detection techniques on social media, including the task definition, different types of targets in stance detection, features set used, and various machine learning approaches applied.
- Score: 5.584060970507506
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Stance detection on social media is an emerging opinion mining paradigm for
various social and political applications in which sentiment analysis may be
sub-optimal. There has been a growing research interest for developing
effective methods for stance detection methods varying among multiple
communities including natural language processing, web science, and social
computing. This paper surveys the work on stance detection within those
communities and situates its usage within current opinion mining techniques in
social media. It presents an exhaustive review of stance detection techniques
on social media, including the task definition, different types of targets in
stance detection, features set used, and various machine learning approaches
applied. The survey reports state-of-the-art results on the existing benchmark
datasets on stance detection, and discusses the most effective approaches. In
addition, this study explores the emerging trends and different applications of
stance detection on social media. The study concludes by discussing the gaps in
the current existing research and highlights the possible future directions for
stance detection on social media.
Related papers
- Human Action Anticipation: A Survey [86.415721659234]
The literature on behavior prediction spans various tasks, including action anticipation, activity forecasting, intent prediction, goal prediction, and so on.
Our survey aims to tie together this fragmented literature, covering recent technical innovations as well as the development of new large-scale datasets for model training and evaluation.
arXiv Detail & Related papers (2024-10-17T21:37:40Z) - A Survey of Stance Detection on Social Media: New Directions and Perspectives [50.27382951812502]
stance detection has emerged as a crucial subfield within affective computing.
Recent years have seen a surge of research interest in developing effective stance detection methods.
This paper provides a comprehensive survey of stance detection techniques on social media.
arXiv Detail & Related papers (2024-09-24T03:06:25Z) - Co-Located Human-Human Interaction Analysis using Nonverbal Cues: A
Survey [71.43956423427397]
We aim to identify the nonverbal cues and computational methodologies resulting in effective performance.
This survey differs from its counterparts by involving the widest spectrum of social phenomena and interaction settings.
Some major observations are: the most often used nonverbal cue, computational method, interaction environment, and sensing approach are speaking activity, support vector machines, and meetings composed of 3-4 persons equipped with microphones and cameras, respectively.
arXiv Detail & Related papers (2022-07-20T13:37:57Z) - Didn't see that coming: a survey on non-verbal social human behavior
forecasting [47.99589136455976]
Non-verbal social human behavior forecasting has increasingly attracted the interest of the research community in recent years.
Its direct applications to human-robot interaction and socially-aware human motion generation make it a very attractive field.
We define the behavior forecasting problem for multiple interactive agents in a generic way that aims at unifying the fields of social signals prediction and human motion forecasting.
arXiv Detail & Related papers (2022-03-04T18:25:30Z) - Capturing Stance Dynamics in Social Media: Open Challenges and Research
Directions [6.531659195805749]
Social media platforms provide a goldmine for mining public opinion on issues of wide societal interest.
Opinion mining is a problem that can be operationalised by capturing and aggregating the stance of individual social media posts.
We investigate the intersection between computational linguistics and the temporal evolution of human communication in digital media.
arXiv Detail & Related papers (2021-09-01T16:28:24Z) - Encoding Heterogeneous Social and Political Context for Entity Stance
Prediction [7.477393857078695]
We propose the novel task of entity stance prediction.
We retrieve facts from Wikipedia about social entities regarding contemporary U.S. politics.
We then annotate social entities' stances towards political ideologies with the help of domain experts.
arXiv Detail & Related papers (2021-08-09T08:59:43Z) - Over a Decade of Social Opinion Mining [1.0152838128195467]
This systematic review focuses on the evolving research area of Social Opinion Mining.
Natural language can be understood in terms of the different opinion dimensions, as expressed by humans.
Future research directions are presented, whereas further research and development has the potential of leaving a wider academic and societal impact.
arXiv Detail & Related papers (2020-12-05T17:59:59Z) - Stance Detection in Web and Social Media: A Comparative Study [3.937145867005019]
Online forums and social media platforms are increasingly being used to discuss topics of varying polarities where different people take different stances.
Several methodologies for automatic stance detection from text have been proposed in literature.
To our knowledge, there has not been any systematic investigation towards their, and their comparative performances.
arXiv Detail & Related papers (2020-07-12T12:39:35Z) - Human Trajectory Forecasting in Crowds: A Deep Learning Perspective [89.4600982169]
We present an in-depth analysis of existing deep learning-based methods for modelling social interactions.
We propose two knowledge-based data-driven methods to effectively capture these social interactions.
We develop a large scale interaction-centric benchmark TrajNet++, a significant yet missing component in the field of human trajectory forecasting.
arXiv Detail & Related papers (2020-07-07T17:19:56Z) - Survey of Network Intrusion Detection Methods from the Perspective of
the Knowledge Discovery in Databases Process [63.75363908696257]
We review the methods that have been applied to network data with the purpose of developing an intrusion detector.
We discuss the techniques used for the capture, preparation and transformation of the data, as well as, the data mining and evaluation methods.
As a result of this literature review, we investigate some open issues which will need to be considered for further research in the area of network security.
arXiv Detail & Related papers (2020-01-27T11:21:05Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.