論文の概要: On the Limits of Pseudo Ground Truth in Visual Camera Re-localisation
- arxiv url: http://arxiv.org/abs/2109.00524v1
- Date: Wed, 1 Sep 2021 12:01:08 GMT
- ステータス: 処理完了
- システム内更新日: 2021-09-03 14:05:57.252868
- Title: On the Limits of Pseudo Ground Truth in Visual Camera Re-localisation
- Title(参考訳): 視覚カメラ再局在における擬似地中真実の限界について
- Authors: Eric Brachmann, Martin Humenberger, Carsten Rother, Torsten Sattler
- Abstract要約: 再ローカライゼーションベンチマークは、各メソッドが参照アルゴリズムの結果をいかにうまく再現するかを測定する。
このことは、参照アルゴリズムの選択がある種の再ローカライゼーション手法を好むかどうかを問うものである。
本稿では、広く使われている2つの再ローカライゼーションデータセットを分析し、参照アルゴリズムの選択によって評価結果が実際に異なることを示す。
- 参考スコア(独自算出の注目度): 83.29404673257328
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Benchmark datasets that measure camera pose accuracy have driven progress in
visual re-localisation research. To obtain poses for thousands of images, it is
common to use a reference algorithm to generate pseudo ground truth. Popular
choices include Structure-from-Motion (SfM) and
Simultaneous-Localisation-and-Mapping (SLAM) using additional sensors like
depth cameras if available. Re-localisation benchmarks thus measure how well
each method replicates the results of the reference algorithm. This begs the
question whether the choice of the reference algorithm favours a certain family
of re-localisation methods. This paper analyzes two widely used re-localisation
datasets and shows that evaluation outcomes indeed vary with the choice of the
reference algorithm. We thus question common beliefs in the re-localisation
literature, namely that learning-based scene coordinate regression outperforms
classical feature-based methods, and that RGB-D-based methods outperform
RGB-based methods. We argue that any claims on ranking re-localisation methods
should take the type of the reference algorithm, and the similarity of the
methods to the reference algorithm, into account.
- Abstract(参考訳): カメラの精度を測定するベンチマークデータセットは、視覚的再ローカライゼーション研究の進歩を促している。
何千もの画像のポーズを得るためには、参照アルゴリズムを使って擬似基底真理を生成するのが一般的である。
一般的な選択肢として、Structure-from-Motion (SfM) や、もし利用可能なディープカメラのような追加センサーを使用する同時ローカライゼーション・アンド・マッピング (SLAM) がある。
再ローカライゼーションベンチマークは、各メソッドが参照アルゴリズムの結果をいかにうまく再現するかを測定する。
このことは、参照アルゴリズムの選択がある種の再ローカライゼーション手法を好むかどうかを問うものである。
本稿では,広く使われている2つの再ローカライズデータセットを分析し,評価結果が参照アルゴリズムの選択によって実際に異なることを示す。
そこで我々は,学習に基づくシーン座標の回帰は古典的特徴に基づく手法よりも優れており,RGBに基づく手法よりもRGBに基づく手法の方が優れているという,再ローカライゼーション文学における一般的な信念を疑問視する。
ランク付け再局在化手法のクレームは参照アルゴリズムの型と参照アルゴリズムとの類似性を考慮して考慮すべきである。
関連論文リスト
- FUSELOC: Fusing Global and Local Descriptors to Disambiguate 2D-3D Matching in Visual Localization [57.59857784298536]
直接2D-3Dマッチングアルゴリズムでは、メモリが大幅に削減されるが、より大きくあいまいな検索空間のために精度が低下する。
本研究では,2次元3次元探索フレームワーク内の重み付き平均演算子を用いて局所的およびグローバルな記述子を融合させることにより,この曖昧さに対処する。
ローカルのみのシステムの精度を常に改善し、メモリ要求を半減させながら階層的な手法に近い性能を達成する。
論文 参考訳(メタデータ) (2024-08-21T23:42:16Z) - RGB-based Category-level Object Pose Estimation via Decoupled Metric
Scale Recovery [72.13154206106259]
本研究では、6次元のポーズとサイズ推定を分離し、不完全なスケールが剛性変換に与える影響を緩和するパイプラインを提案する。
具体的には,事前学習した単分子推定器を用いて局所的な幾何学的情報を抽出する。
別個のブランチは、カテゴリレベルの統計に基づいてオブジェクトのメートル法スケールを直接復元するように設計されている。
論文 参考訳(メタデータ) (2023-09-19T02:20:26Z) - Hyperspectral Target Detection Based on Low-Rank Background Subspace
Learning and Graph Laplacian Regularization [2.9626402880497267]
ハイパースペクトル目標検出は、スペクトル特性に基づく薄暗い物体や小さな物体の発見に有効である。
既存の表現に基づく手法は、未知の背景辞書の問題によって妨げられる。
本稿では低ランク表現(LRR)とグラフラプラシア正規化(GLR)に基づく効率的な最適化手法を提案する。
論文 参考訳(メタデータ) (2023-06-01T13:51:08Z) - Learning to Localize in Unseen Scenes with Relative Pose Regressors [5.672132510411465]
相対的なポーズ回帰器(RPR)は、相対的な翻訳と回転をポーズラベル付き参照に推定することで、カメラをローカライズする。
しかし実際には、RPRのパフォーマンスは目に見えない場面で著しく劣化している。
我々は、結合、投影、注意操作(Transformer)によるアグリゲーションを実装し、結果として生じる潜在コードから相対的なポーズパラメータを回帰することを学ぶ。
現状のRCPと比較すると、室内および屋外のベンチマークにおいて、表示シーンにおける競合性能を維持しながら、見えない環境において、より優れたローカライズが期待できる。
論文 参考訳(メタデータ) (2023-03-05T17:12:50Z) - ImPosIng: Implicit Pose Encoding for Efficient Camera Pose Estimation [2.6808541153140077]
暗黙の詩。
(ImPosing)はイメージとカメラのポーズを2つの別々のニューラルネットワークで共通の潜在表現に埋め込む。
階層的な方法で潜在空間を通して候補を評価することにより、カメラの位置と向きを直接回帰するのではなく、洗練する。
論文 参考訳(メタデータ) (2022-05-05T13:33:25Z) - Deep Metric Learning for Ground Images [4.864819846886142]
我々は,現在のロボットの位置決めについて事前の知識がない初期位置決めタスクに対処する。
本稿では,クエリ画像に最もよく似た参照画像を取得するディープメトリック学習手法を提案する。
地上画像の既存の画像検索手法とは対照的に,提案手法はリコール性能が大幅に向上し,最先端のテクスチャベースローカライゼーション手法のローカライズ性能が向上する。
論文 参考訳(メタデータ) (2021-09-03T14:43:59Z) - Recall@k Surrogate Loss with Large Batches and Similarity Mixup [62.67458021725227]
微分不可能な場合、評価計量の勾配降下による直接最適化は不可能である。
本研究は,リコールにおける相異なるサロゲート損失を提案する。
提案手法は,複数の画像検索ベンチマークにおいて最先端の結果を得る。
論文 参考訳(メタデータ) (2021-08-25T11:09:11Z) - LM-Reloc: Levenberg-Marquardt Based Direct Visual Relocalization [54.77498358487812]
LM-Relocは、直接画像アライメントに基づく視覚的再ローカライズのための新しいアプローチである。
本稿では,LM-Net を学習するための古典的レバンス・マルカルトアルゴリズムにインスパイアされた損失定式化を提案する。
論文 参考訳(メタデータ) (2020-10-13T12:15:20Z) - Making Affine Correspondences Work in Camera Geometry Computation [62.7633180470428]
局所的な特徴は、ポイント・ツー・ポイント対応ではなく、リージョン・ツー・リージョンを提供する。
本稿では,全モデル推定パイプラインにおいて,地域間マッチングを効果的に活用するためのガイドラインを提案する。
実験により、アフィンソルバはより高速な実行時にポイントベースソルバに匹敵する精度を達成できることが示された。
論文 参考訳(メタデータ) (2020-07-20T12:07:48Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。