論文の概要: Proof Transfer for Neural Network Verification
- arxiv url: http://arxiv.org/abs/2109.00542v1
- Date: Wed, 1 Sep 2021 16:59:09 GMT
- ステータス: 処理完了
- システム内更新日: 2021-09-04 08:51:25.797198
- Title: Proof Transfer for Neural Network Verification
- Title(参考訳): ニューラルネットワーク検証のための証明転送
- Authors: Christian Sprecher, Marc Fischer, Dimitar I. Dimitrov, Gagandeep
Singh, Martin Vechev
- Abstract要約: 本稿では,ニューラルネットワーク検証のための証明伝達という新しい概念を紹介する。
既存の証明をキャプチャして一般化する証明テンプレートを生成することで、その後の証明を高速化できることを示す。
- 参考スコア(独自算出の注目度): 6.243364758599314
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We introduce the novel concept of proof transfer for neural network
verification. We show that by generating proof templates that capture and
generalize existing proofs, we can speed up subsequent proofs. In particular we
create these templates from previous proofs on the same neural network and
consider two cases: (i) where the proofs are created online when verifying
other properties and (ii) where the templates are created offline using a
dataset. We base our methods on three key hypotheses of neural network
robustness proofs. Our evaluation shows the potential of proof transfer for
benefitting robustness verification of neural networks against adversarial
patches, geometric, and $\ell_{\infty}$-perturbations.
- Abstract(参考訳): 本稿では,ニューラルネットワーク検証のための証明伝達の概念を紹介する。
既存の証明をキャプチャして一般化する証明テンプレートを生成することで、後続の証明を高速化できることを示す。
特に、同じニューラルネットワーク上の以前の証明からこれらのテンプレートを作成し、(i)他のプロパティを検証するときに証明がオンラインで作成される場合と(ii)データセットを使用してテンプレートがオフラインで作成される場合の2つを考慮する。
我々は、ニューラルネットワークのロバスト性証明の3つの重要な仮説に基づく。
本評価は,ニューラルネットワークの逆パッチ,幾何,および$\ell_{\infty}$-perturbationsに対する堅牢性検証に有効であることを示す。
関連論文リスト
- SINDER: Repairing the Singular Defects of DINOv2 [61.98878352956125]
大規模なデータセットでトレーニングされたビジョントランスフォーマーモデルは、抽出したパッチトークンにアーティファクトを表示することが多い。
本稿では,小さなデータセットのみを用いて構造欠陥を補正するスムーズなスムーズな正規化を提案する。
論文 参考訳(メタデータ) (2024-07-23T20:34:23Z) - QGait: Toward Accurate Quantization for Gait Recognition with Binarized Input [17.017127559393398]
バックプロパゲーション時の円関数の勾配をよりよくシミュレートする,微分可能なソフト量子化器を提案する。
これにより、ネットワークは微妙な入力摂動から学習することができる。
量子化エラーをシミュレートしながら収束を確保するためのトレーニング戦略をさらに洗練する。
論文 参考訳(メタデータ) (2024-05-22T17:34:18Z) - Collective Robustness Certificates: Exploiting Interdependence in Graph
Neural Networks [71.78900818931847]
ノード分類、画像分割、名前付き一致認識といったタスクでは、複数の予測を同時に出力する分類器があります。
既存の対向ロバスト性証明は、それぞれの予測を独立に考慮し、従ってそのようなタスクに対して過度に悲観的である。
本稿では,摂動下で安定に保たれることが保証される予測数を計算した最初の集合ロバスト性証明を提案する。
論文 参考訳(メタデータ) (2023-02-06T14:46:51Z) - Deepfake Detection via Joint Unsupervised Reconstruction and Supervised
Classification [25.84902508816679]
本稿では,再建作業と分類作業を同時に行うディープフェイク検出手法を提案する。
この方法は、あるタスクによって学習された情報を他のタスクと共有する。
提案手法は,一般的に使用されている3つのデータセットに対して,最先端の性能を実現する。
論文 参考訳(メタデータ) (2022-11-24T05:44:26Z) - Localized Randomized Smoothing for Collective Robustness Certification [60.83383487495282]
我々は、あらゆる種類のモデルに対してより一般的な集合的ロバスト性証明を提案する。
このアプローチは、より大規模なソフトな局所モデルに対して有益であることを示す。
この証明書は、我々の新しい局所的ランダム化平滑化アプローチに基づいている。
論文 参考訳(メタデータ) (2022-10-28T14:10:24Z) - ORF-Net: Deep Omni-supervised Rib Fracture Detection from Chest CT Scans [47.7670302148812]
放射線科医は、スライス・バイ・スライス・バイ・スライス(スライス・バイ・スライス・スライス・バイ・スライス・バイ・スライス・バイ・スライス)に基づいてリブ骨折の調査と注釈を行う必要がある。
そこで本研究では,複数種類の注釈付きデータを利用するOmni教師付きオブジェクト検出ネットワークを提案する。
提案手法は、他の最先端手法よりも一貫して優れている。
論文 参考訳(メタデータ) (2022-07-05T07:06:57Z) - Manifold Regularized Dynamic Network Pruning [102.24146031250034]
本稿では,全インスタンスの多様体情報をプルーンドネットワークの空間に埋め込むことにより,冗長フィルタを動的に除去する新しいパラダイムを提案する。
提案手法の有効性をいくつかのベンチマークで検証し,精度と計算コストの両面で優れた性能を示す。
論文 参考訳(メタデータ) (2021-03-10T03:59:03Z) - Co-mining: Self-Supervised Learning for Sparsely Annotated Object
Detection [29.683119976550007]
我々は,簡潔な注釈付き物体検出のためのシンプルだが効果的な機構であるCo-miningを提案する。
共同マイニングでは、シームズネットワークの2つのブランチが互いに擬似ラベルセットを予測します。
実験は3つの異なるアノテートされた設定でMSデータセット上で行われる。
論文 参考訳(メタデータ) (2020-12-03T14:23:43Z) - Unsupervised Metric Relocalization Using Transform Consistency Loss [66.19479868638925]
メートル法再ローカライズを行うためのトレーニングネットワークは、従来、正確な画像対応が必要である。
地図内のクエリ画像のローカライズは、登録に使用される参照画像に関係なく、同じ絶対的なポーズを与えるべきである。
提案手法は, 限られた地下構造情報が得られる場合に, 他の教師あり手法よりも優れていることを示す。
論文 参考訳(メタデータ) (2020-11-01T19:24:27Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。