Field-Based Plot Extraction Using UAV RGB Images
- URL: http://arxiv.org/abs/2109.00632v1
- Date: Wed, 1 Sep 2021 22:04:59 GMT
- Title: Field-Based Plot Extraction Using UAV RGB Images
- Authors: Changye Yang, Sriram Baireddy, Enyu Cai, Melba Crawford, Edward J.
Delp
- Abstract summary: Unmanned Aerial Vehicles (UAVs) have become popular for use in plant phenotyping of field based crops, such as maize and sorghum.
We propose a new plot extraction method that will segment a UAV image into plots.
- Score: 18.420863296523727
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Unmanned Aerial Vehicles (UAVs) have become popular for use in plant
phenotyping of field based crops, such as maize and sorghum, due to their
ability to acquire high resolution data over field trials. Field experiments,
which may comprise thousands of plants, are planted according to experimental
designs to evaluate varieties or management practices. For many types of
phenotyping analysis, we examine smaller groups of plants known as "plots." In
this paper, we propose a new plot extraction method that will segment a UAV
image into plots. We will demonstrate that our method achieves higher plot
extraction accuracy than existing approaches.
Related papers
- Plant detection from ultra high resolution remote sensing images: A Semantic Segmentation approach based on fuzzy loss [2.6489824612123716]
We tackle the challenge of identifying plant species from ultra high resolution (UHR) remote sensing images.
Our approach involves introducing an RGB remote sensing dataset, characterized by millimeter-level spatial resolution.
First experimental results obtained on both our UHR dataset and a public dataset are presented, showing the relevance of the proposed methodology.
arXiv Detail & Related papers (2024-08-31T17:40:17Z) - BonnBeetClouds3D: A Dataset Towards Point Cloud-based Organ-level
Phenotyping of Sugar Beet Plants under Field Conditions [30.27773980916216]
Agricultural production is facing severe challenges in the next decades induced by climate change and the need for sustainability.
Advancements in field management through non-chemical weeding by robots in combination with monitoring of crops by autonomous unmanned aerial vehicles (UAVs) are helpful to address these challenges.
The analysis of plant traits, called phenotyping, is an essential activity in plant breeding, it however involves a great amount of manual labor.
arXiv Detail & Related papers (2023-12-22T14:06:44Z) - Aerial Diffusion: Text Guided Ground-to-Aerial View Translation from a
Single Image using Diffusion Models [72.76182801289497]
We present a novel method, Aerial Diffusion, for generating aerial views from a single ground-view image using text guidance.
We address two main challenges corresponding to domain gap between the ground-view and the aerial view.
Aerial Diffusion is the first approach that performs ground-to-aerial translation in an unsupervised manner.
arXiv Detail & Related papers (2023-03-15T22:26:09Z) - Semantic Image Segmentation with Deep Learning for Vine Leaf Phenotyping [59.0626764544669]
In this study, we use Deep Learning methods to semantically segment grapevine leaves images in order to develop an automated object detection system for leaf phenotyping.
Our work contributes to plant lifecycle monitoring through which dynamic traits such as growth and development can be captured and quantified.
arXiv Detail & Related papers (2022-10-24T14:37:09Z) - MetaRF: Differentiable Random Forest for Reaction Yield Prediction with
a Few Trails [58.47364143304643]
In this paper, we focus on the reaction yield prediction problem.
We first put forth MetaRF, an attention-based differentiable random forest model specially designed for the few-shot yield prediction.
To improve the few-shot learning performance, we further introduce a dimension-reduction based sampling method.
arXiv Detail & Related papers (2022-08-22T06:40:13Z) - Generative models-based data labeling for deep networks regression:
application to seed maturity estimation from UAV multispectral images [3.6868861317674524]
Monitoring seed maturity is an increasing challenge in agriculture due to climate change and more restrictive practices.
Traditional methods are based on limited sampling in the field and analysis in laboratory.
We propose a method for estimating parsley seed maturity using multispectral UAV imagery, with a new approach for automatic data labeling.
arXiv Detail & Related papers (2022-08-09T09:06:51Z) - End-to-end deep learning for directly estimating grape yield from
ground-based imagery [53.086864957064876]
This study demonstrates the application of proximal imaging combined with deep learning for yield estimation in vineyards.
Three model architectures were tested: object detection, CNN regression, and transformer models.
The study showed the applicability of proximal imaging and deep learning for prediction of grapevine yield on a large scale.
arXiv Detail & Related papers (2022-08-04T01:34:46Z) - High-Resolution UAV Image Generation for Sorghum Panicle Detection [23.88932181375298]
We present an approach that uses synthetic training images from generative adversarial networks (GANs) for data augmentation to enhance the performance of Sorghum panicle detection and counting.
Our method can generate synthetic high-resolution UAV RGB images with panicle labels by using image-to-image translation GANs with a limited ground truth dataset of real UAV RGB images.
arXiv Detail & Related papers (2022-05-08T20:26:56Z) - Potato Crop Stress Identification in Aerial Images using Deep
Learning-based Object Detection [60.83360138070649]
The paper presents an approach for analyzing aerial images of a potato crop using deep neural networks.
The main objective is to demonstrate automated spatial recognition of a healthy versus stressed crop at a plant level.
Experimental validation demonstrated the ability for distinguishing healthy and stressed plants in field images, achieving an average Dice coefficient of 0.74.
arXiv Detail & Related papers (2021-06-14T21:57:40Z) - Two-View Fine-grained Classification of Plant Species [66.75915278733197]
We propose a novel method based on a two-view leaf image representation and a hierarchical classification strategy for fine-grained recognition of plant species.
A deep metric based on Siamese convolutional neural networks is used to reduce the dependence on a large number of training samples and make the method scalable to new plant species.
arXiv Detail & Related papers (2020-05-18T21:57:47Z) - Deep Transfer Learning For Plant Center Localization [19.322420819302263]
This paper investigates methods that estimate plant locations for a field-based crop using RGB aerial images captured using Unmanned Aerial Vehicles (UAVs)
Deep learning approaches provide promising capability for locating plants observed in RGB images, but they require large quantities of labeled data (ground truth) for training.
We propose a method for estimating plant centers by transferring an existing model to a new scenario using limited ground truth data.
arXiv Detail & Related papers (2020-04-29T06:29:49Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.