BonnBeetClouds3D: A Dataset Towards Point Cloud-based Organ-level
Phenotyping of Sugar Beet Plants under Field Conditions
- URL: http://arxiv.org/abs/2312.14706v1
- Date: Fri, 22 Dec 2023 14:06:44 GMT
- Title: BonnBeetClouds3D: A Dataset Towards Point Cloud-based Organ-level
Phenotyping of Sugar Beet Plants under Field Conditions
- Authors: Elias Marks, Jonas B\"omer, Federico Magistri, Anurag Sah, Jens
Behley, Cyrill Stachniss
- Abstract summary: Agricultural production is facing severe challenges in the next decades induced by climate change and the need for sustainability.
Advancements in field management through non-chemical weeding by robots in combination with monitoring of crops by autonomous unmanned aerial vehicles (UAVs) are helpful to address these challenges.
The analysis of plant traits, called phenotyping, is an essential activity in plant breeding, it however involves a great amount of manual labor.
- Score: 30.27773980916216
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Agricultural production is facing severe challenges in the next decades
induced by climate change and the need for sustainability, reducing its impact
on the environment. Advancements in field management through non-chemical
weeding by robots in combination with monitoring of crops by autonomous
unmanned aerial vehicles (UAVs) and breeding of novel and more resilient crop
varieties are helpful to address these challenges. The analysis of plant
traits, called phenotyping, is an essential activity in plant breeding, it
however involves a great amount of manual labor. With this paper, we address
the problem of automatic fine-grained organ-level geometric analysis needed for
precision phenotyping. As the availability of real-world data in this domain is
relatively scarce, we propose a novel dataset that was acquired using UAVs
capturing high-resolution images of a real breeding trial containing 48 plant
varieties and therefore covering great morphological and appearance diversity.
This enables the development of approaches for autonomous phenotyping that
generalize well to different varieties. Based on overlapping high-resolution
images from multiple viewing angles, we compute photogrammetric dense point
clouds and provide detailed and accurate point-wise labels for plants, leaves,
and salient points as the tip and the base. Additionally, we include
measurements of phenotypic traits performed by experts from the German Federal
Plant Variety Office on the real plants, allowing the evaluation of new
approaches not only on segmentation and keypoint detection but also directly on
the downstream tasks. The provided labeled point clouds enable fine-grained
plant analysis and support further progress in the development of automatic
phenotyping approaches, but also enable further research in surface
reconstruction, point cloud completion, and semantic interpretation of point
clouds.
Related papers
- Generating Diverse Agricultural Data for Vision-Based Farming Applications [74.79409721178489]
This model is capable of simulating distinct growth stages of plants, diverse soil conditions, and randomized field arrangements under varying lighting conditions.
Our dataset includes 12,000 images with semantic labels, offering a comprehensive resource for computer vision tasks in precision agriculture.
arXiv Detail & Related papers (2024-03-27T08:42:47Z) - Lincoln's Annotated Spatio-Temporal Strawberry Dataset (LAST-Straw) [7.13465721388535]
We present a dataset of 3D point clouds of strawberry plants for two varieties, totalling 84 individual point clouds.
We focus on the end use of such tools - the extraction of biologically relevant phenotypes - to demonstrate a phenotyping pipeline on the dataset.
This comprises of the steps, including; segmentation, skeletonisation and tracking, and we detail how each stage facilitates the extraction of different phenotypes or provision of data insights.
arXiv Detail & Related papers (2024-03-01T14:44:05Z) - Agave crop segmentation and maturity classification with deep learning
data-centric strategies using very high-resolution satellite imagery [101.18253437732933]
We present an Agave tequilana Weber azul crop segmentation and maturity classification using very high resolution satellite imagery.
We solve real-world deep learning problems in the very specific context of agave crop segmentation.
With the resulting accurate models, agave production forecasting can be made available for large regions.
arXiv Detail & Related papers (2023-03-21T03:15:29Z) - Semantic Image Segmentation with Deep Learning for Vine Leaf Phenotyping [59.0626764544669]
In this study, we use Deep Learning methods to semantically segment grapevine leaves images in order to develop an automated object detection system for leaf phenotyping.
Our work contributes to plant lifecycle monitoring through which dynamic traits such as growth and development can be captured and quantified.
arXiv Detail & Related papers (2022-10-24T14:37:09Z) - Potato Crop Stress Identification in Aerial Images using Deep
Learning-based Object Detection [60.83360138070649]
The paper presents an approach for analyzing aerial images of a potato crop using deep neural networks.
The main objective is to demonstrate automated spatial recognition of a healthy versus stressed crop at a plant level.
Experimental validation demonstrated the ability for distinguishing healthy and stressed plants in field images, achieving an average Dice coefficient of 0.74.
arXiv Detail & Related papers (2021-06-14T21:57:40Z) - Multi-resolution Outlier Pooling for Sorghum Classification [4.434302808728865]
We introduce the Sorghum-100 dataset, a large dataset of RGB imagery of sorghum captured by a state-of-the-art gantry system.
A new global pooling strategy called Dynamic Outlier Pooling outperforms standard global pooling strategies on this task.
arXiv Detail & Related papers (2021-06-10T13:57:33Z) - Temporal Prediction and Evaluation of Brassica Growth in the Field using
Conditional Generative Adversarial Networks [1.2926587870771542]
The prediction of plant growth is a major challenge, as it is affected by numerous and highly variable environmental factors.
This paper proposes a novel monitoring approach that comprises high- throughput imaging sensor measurements and their automatic analysis.
Our approach's core is a novel machine learning-based growth model based on conditional generative adversarial networks.
arXiv Detail & Related papers (2021-05-17T13:00:01Z) - Estimating Crop Primary Productivity with Sentinel-2 and Landsat 8 using
Machine Learning Methods Trained with Radiative Transfer Simulations [58.17039841385472]
We take advantage of all parallel developments in mechanistic modeling and satellite data availability for advanced monitoring of crop productivity.
Our model successfully estimates gross primary productivity across a variety of C3 crop types and environmental conditions even though it does not use any local information from the corresponding sites.
This highlights its potential to map crop productivity from new satellite sensors at a global scale with the help of current Earth observation cloud computing platforms.
arXiv Detail & Related papers (2020-12-07T16:23:13Z) - Two-View Fine-grained Classification of Plant Species [66.75915278733197]
We propose a novel method based on a two-view leaf image representation and a hierarchical classification strategy for fine-grained recognition of plant species.
A deep metric based on Siamese convolutional neural networks is used to reduce the dependence on a large number of training samples and make the method scalable to new plant species.
arXiv Detail & Related papers (2020-05-18T21:57:47Z) - Deep Transfer Learning For Plant Center Localization [19.322420819302263]
This paper investigates methods that estimate plant locations for a field-based crop using RGB aerial images captured using Unmanned Aerial Vehicles (UAVs)
Deep learning approaches provide promising capability for locating plants observed in RGB images, but they require large quantities of labeled data (ground truth) for training.
We propose a method for estimating plant centers by transferring an existing model to a new scenario using limited ground truth data.
arXiv Detail & Related papers (2020-04-29T06:29:49Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.