Broadband diffraction of correlated photons from crystal superlattices
- URL: http://arxiv.org/abs/2109.00690v2
- Date: Wed, 13 Oct 2021 11:20:58 GMT
- Title: Broadband diffraction of correlated photons from crystal superlattices
- Authors: Zi S.D. Toa, Anna V. Paterova, Leonid A. Krivitsky
- Abstract summary: We report the generation of spectrally broadband correlated photons from frequency nondegenerate spontaneous parametric down-conversion.
In addition to useful technological applications, our concept offers an interesting analogy between optical diffraction in quantum and classical optics.
- Score: 0.0
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Sources of broadband quantum correlated photons present a valuable resource
for quantum metrology, sensing, and communication. Here, we report the
generation of spectrally broadband correlated photons from frequency
nondegenerate spontaneous parametric down-conversion in a custom-designed
lithium niobate superlattice. The superlattice induces a nonlinear
interference, resulting in an experimentally observed comb-like emission
spanning 0.060 um and 1.4 um of spectral bandwidth at 0.647 um and 3.0 um
wavelengths, respectively. In addition to useful technological applications,
our concept offers an interesting analogy between optical diffraction in
quantum and classical optics.
Related papers
- How to use the dispersion in the $χ^{(3)}$ tensor for broadband generation of polarization-entangled photons [0.0]
Polarization-entangled photon pairs are a widely used resource in quantum optics and technologies.
We show broadband (tens of THz for each photon) generation of polarization-entangled photon pairs by spontaneous four-wave mixing in a diamond crystal.
arXiv Detail & Related papers (2024-08-21T09:43:23Z) - Ultrabright and narrowband intra-fiber biphoton source at ultralow pump
power [51.961447341691]
Nonclassical photon sources of high brightness are key components of quantum communication technologies.
We here demonstrate the generation of narrowband, nonclassical photon pairs by employing spontaneous four-wave mixing in an optically-dense ensemble of cold atoms within a hollow-core fiber.
arXiv Detail & Related papers (2022-08-10T09:04:15Z) - Complete conversion between one and two photons in nonlinear waveguides
with tailored dispersion [62.997667081978825]
We show theoretically how to control coherent conversion between a narrow-band pump photon and broadband photon pairs in nonlinear optical waveguides.
We reveal that complete deterministic conversion as well as pump-photon revival can be achieved at a finite propagation distance.
arXiv Detail & Related papers (2021-10-06T23:49:44Z) - Phonon dephasing and spectral diffusion of quantum emitters in hexagonal
Boron Nitride [52.915502553459724]
Quantum emitters in hexagonal boron nitride (hBN) are emerging as bright and robust sources of single photons for applications in quantum optics.
We study phonon dephasing and spectral diffusion of quantum emitters in hBN via resonant excitation spectroscopy at cryogenic temperatures.
arXiv Detail & Related papers (2021-05-25T05:56:18Z) - Frequency correlated photon generation at telecom band using silicon
nitride ring cavities [0.4802758600019421]
Chip-scale entangled photon sources have been developed using silicon platforms.
We report the generation of frequency correlated photon pairs using a 150-GHz silicon nitride ring cavity.
arXiv Detail & Related papers (2021-02-05T05:27:31Z) - Quantum Borrmann effect for dissipation-immune photon-photon
correlations [137.6408511310322]
We study theoretically the second-order correlation function $g(2)(t)$ for photons transmitted through a periodic Bragg-spaced array of superconducting qubits, coupled to a waveguide.
We demonstrate that photon bunching and anti-bunching persist much longer than both radiative and non-radiative lifetimes of a single qubit.
arXiv Detail & Related papers (2020-09-29T14:37:04Z) - Spontaneous Parametric Down-Conversion from Subwavelength Nonlinear
Films [0.0]
We demonstrate photon pair generation via spontaneous parametric down-wavelength (SPDC) from subconversion films.
We obtained photon pairs with a spectral bandwidth of 500;nm, limited only by the overall detection efficiency.
Our experiments lay the groundwork for the future development of flat SPDC sources, including QOM.
arXiv Detail & Related papers (2020-09-01T10:07:11Z) - Tunable quantum interference using a topological source of
indistinguishable photon pairs [0.0]
We demonstrate the use of a two-dimensional array of ring resonators to generate indistinguishable photon pairs.
We show that the linear dispersion of the edge states over a broad bandwidth allows us to tune the correlations.
Our results pave the way for scalable and tunable sources of squeezed light.
arXiv Detail & Related papers (2020-06-04T18:11:30Z) - Hyperentanglement in structured quantum light [50.591267188664666]
Entanglement in high-dimensional quantum systems, where one or more degrees of freedom of light are involved, offers increased information capacities and enables new quantum protocols.
Here, we demonstrate a functional source of high-dimensional, noise-resilient hyperentangled states encoded in time-frequency and vector-vortex structured modes.
We generate highly entangled photon pairs at telecom wavelength that we characterise via two-photon interference and quantum state tomography, achieving near-unity visibilities and fidelities.
arXiv Detail & Related papers (2020-06-02T18:00:04Z) - Probing excited-state dynamics with quantum entangled photons:
Correspondence to coherent multidimensional spectroscopy [0.0]
Quantum light is a key resource for promoting quantum technology.
One such class of technology aims to improve the precision of optical measurements using engineered quantum states of light.
arXiv Detail & Related papers (2020-05-22T03:22:44Z) - Near-ideal spontaneous photon sources in silicon quantum photonics [55.41644538483948]
Integrated photonics is a robust platform for quantum information processing.
Sources of single photons that are highly indistinguishable and pure, that are either near-deterministic or heralded with high efficiency, have been elusive.
Here, we demonstrate on-chip photon sources that simultaneously meet each of these requirements.
arXiv Detail & Related papers (2020-05-19T16:46:44Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.