論文の概要: Efficient Algorithms For Fair Clustering with a New Fairness Notion
- arxiv url: http://arxiv.org/abs/2109.00708v2
- Date: Fri, 3 Sep 2021 08:44:39 GMT
- ステータス: 処理完了
- システム内更新日: 2021-09-06 11:14:11.505133
- Title: Efficient Algorithms For Fair Clustering with a New Fairness Notion
- Title(参考訳): フェアネス概念を用いたフェアクラスタリングの効率的なアルゴリズム
- Authors: Shivam Gupta, Ganesh Ghalme, Narayanan C. Krishnan and Shweta Jain
- Abstract要約: 我々は、Chierichettiらによって最初に導入されたフェアクラスタリングの問題を再考する。
既存のクラスタリングのソリューションはスケーラビリティが低いか、クラスタリングの目的と公平性のトレードオフを最適に達成できないかのいずれかです。
バランス特性を厳密に一般化し、細粒度効率とフェアネストレードオフを可能にする、$tau$-fair Fairnessと呼ばれる新しいフェアネスの概念を提案する。
- 参考スコア(独自算出の注目度): 5.21410307583181
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We revisit the problem of fair clustering, first introduced by Chierichetti
et al., that requires each protected attribute to have approximately equal
representation in every cluster; i.e., a balance property. Existing solutions
to fair clustering are either not scalable or do not achieve an optimal
trade-off between clustering objective and fairness. In this paper, we propose
a new notion of fairness, which we call $tau$-fair fairness, that strictly
generalizes the balance property and enables a fine-grained efficiency vs.
fairness trade-off. Furthermore, we show that simple greedy round-robin based
algorithms achieve this trade-off efficiently. Under a more general setting of
multi-valued protected attributes, we rigorously analyze the theoretical
properties of the our algorithms. Our experimental results suggest that the
proposed solution outperforms all the state-of-the-art algorithms and works
exceptionally well even for a large number of clusters.
- Abstract(参考訳): 我々は、まずChierichettiらによって導入されたフェアクラスタリングの問題を再考し、各保護属性が各クラスタにほぼ等しい表現、すなわちバランス特性を持つことを要求する。
既存のクラスタリングのソリューションはスケーラビリティが低いか、クラスタリングの目的と公平性のトレードオフが最適でないかのいずれかです。
本稿では,バランス特性を厳密に一般化し,細粒度効率とフェアネストレードオフの両立を可能にする,$tau$-fair Fairnessという新しいフェアネスの概念を提案する。
さらに, 単純なグリーディラウンドロビンベースアルゴリズムにより, このトレードオフを効率的に実現できることを示す。
多値保護属性のより一般的な設定の下で、我々はアルゴリズムの理論的特性を厳密に分析する。
実験結果から,提案手法はすべての最先端アルゴリズムより優れており,多数のクラスタに対しても極めて良好に動作することが示唆された。
関連論文リスト
- Practical Approaches for Fair Learning with Multitype and Multivariate
Sensitive Attributes [70.6326967720747]
現実世界に展開された機械学習アルゴリズムが不公平さや意図しない社会的結果をもたらすことはないことを保証することが重要である。
本稿では,カーネルHilbert Spacesの相互共分散演算子上に構築されたフェアネス尺度であるFairCOCCOを紹介する。
実世界のデータセットにおける予測能力と公正性のバランスをとる上で、最先端技術に対する一貫した改善を実証的に示す。
論文 参考訳(メタデータ) (2022-11-11T11:28:46Z) - Fairness via Adversarial Attribute Neighbourhood Robust Learning [49.93775302674591]
本稿では,分類ヘッドを損なうために,UnderlineRobust underlineAdversarial underlineAttribute underlineNeighbourhood (RAAN)損失を原則として提案する。
論文 参考訳(メタデータ) (2022-10-12T23:39:28Z) - Improved Approximation for Fair Correlation Clustering [4.629694186457133]
相関クラスタリングは教師なし機械学習におけるユビキタスパラダイムであり、不公平に対処することが大きな課題である。
そこで本研究では,データポイントが異なる保護グループに属しているフェア相関クラスタリングについて検討する。
本稿は,Ahmadi et al.とAhmadian et alの以前の研究の質保証を著しく一般化し,改善する。
論文 参考訳(メタデータ) (2022-06-09T03:07:57Z) - Fair Labeled Clustering [28.297893914525517]
クラスタリングのダウンストリーム適用と,そのような設定に対してグループフェアネスをどのように確保するかを検討する。
このような問題に対するアルゴリズムを提供し、グループフェアクラスタリングにおけるNPハードのアルゴリズムとは対照的に、効率的な解が可能であることを示す。
また、距離空間における中心位置に関係なく、意思決定者が自由にクラスタにラベルを割り当てることができるような、モチベーションのよい代替設定についても検討する。
論文 参考訳(メタデータ) (2022-05-28T07:07:12Z) - Fair Clustering Under a Bounded Cost [33.50262066253557]
クラスタリングは、データセットをメトリクス空間内の近くのポイントで構成されるクラスタに分割する、基本的な教師なしの学習問題である。
最近の変種であるフェアクラスタリング(英語版)は、各点とその群のメンバーシップを表す色を関連付け、各色が群フェアネスを満たすために各クラスタに等しい表現(およそ)を持つことを要求する。
我々は,集団の実用的目的と集団の平等的目的,および集団の平等的目的を一般化するグループ・レキシミン的目的の2つの公正性を考察する。
論文 参考訳(メタデータ) (2021-06-14T08:47:36Z) - Fair Clustering Using Antidote Data [35.40427659749882]
クラスタリングにおける公正性に対する代替的アプローチとして,アンチドテデータと呼ばれる少数のデータポイントで元のデータセットを拡大する手法を提案する。
我々のアルゴリズムは、他の最先端のフェアクラスタリングアルゴリズムと比較して、フェアネスコストと競合クラスタリング性能を低くする。
論文 参考訳(メタデータ) (2021-06-01T16:07:52Z) - Deep Fair Discriminative Clustering [24.237000220172906]
2値および多状態保護状態変数(PSV)に対するグループレベルの公正性の一般概念について検討する。
本稿では,クラスタリング目標とフェアネス目標とを組み合わせて,フェアクラスタを適応的に学習する改良学習アルゴリズムを提案する。
本フレームワークは, フレキシブルフェアネス制約, マルチステートPSV, 予測クラスタリングなど, 新規なクラスタリングタスクに対して有望な結果を示す。
論文 参考訳(メタデータ) (2021-05-28T23:50:48Z) - MultiFair: Multi-Group Fairness in Machine Learning [52.24956510371455]
機械学習におけるマルチグループフェアネスの研究(MultiFair)
この問題を解決するために,汎用的なエンドツーエンドのアルゴリズムフレームワークを提案する。
提案するフレームワークは多くの異なる設定に一般化可能である。
論文 参考訳(メタデータ) (2021-05-24T02:30:22Z) - Scalable Hierarchical Agglomerative Clustering [65.66407726145619]
既存のスケーラブルな階層的クラスタリング手法は、スピードの質を犠牲にする。
我々は、品質を犠牲にせず、数十億のデータポイントまでスケールする、スケーラブルで集約的な階層的クラスタリング法を提案する。
論文 参考訳(メタデータ) (2020-10-22T15:58:35Z) - Fair Hierarchical Clustering [92.03780518164108]
従来のクラスタリングにおける過剰表現を緩和する公平性の概念を定義する。
我々のアルゴリズムは、目的に対して無視できない損失しか持たない、公平な階層的なクラスタリングを見つけることができることを示す。
論文 参考訳(メタデータ) (2020-06-18T01:05:11Z) - Fair Correlation Clustering [92.15492066925977]
相関クラスタリングの近似アルゴリズムは,いくつかの重要なフェアネス制約の下で得られる。
相関クラスタリングに対する公平な解は、最先端の(不公平な)アルゴリズムと比較して、コストを抑えながら得られることを示す。
論文 参考訳(メタデータ) (2020-02-06T14:28:21Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。