Heterogeneous relational message passing networks for molecular dynamics
simulations
- URL: http://arxiv.org/abs/2109.00711v1
- Date: Thu, 2 Sep 2021 05:04:57 GMT
- Title: Heterogeneous relational message passing networks for molecular dynamics
simulations
- Authors: Zun Wang, Chong Wang, Sibo Zhao, Yong Xu, Shaogang Hao, Chang Yu
Hsieh, Bing-Lin Gu and Wenhui Duan
- Abstract summary: We propose HermNet, an end-to-end heterogeneous graph neural networks, to efficiently express multiple interactions in a single model.
HermNet performs impressively against many top-performing models on both molecular and extended systems.
- Score: 10.30351315399729
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: With many frameworks based on message passing neural networks proposed to
predict molecular and bulk properties, machine learning methods have
tremendously shifted the paradigms of computational sciences underpinning
physics, material science, chemistry, and biology. While existing machine
learning models have yielded superior performances in many occasions, most of
them model and process molecular systems in terms of homogeneous graph, which
severely limits the expressive power for representing diverse interactions. In
practice, graph data with multiple node and edge types is ubiquitous and more
appropriate for molecular systems. Thus, we propose the heterogeneous
relational message passing network (HermNet), an end-to-end heterogeneous graph
neural networks, to efficiently express multiple interactions in a single model
with {\it ab initio} accuracy. HermNet performs impressively against many
top-performing models on both molecular and extended systems. Specifically,
HermNet outperforms other tested models in nearly 75\%, 83\% and 94\% of tasks
on MD17, QM9 and extended systems datasets, respectively. Finally, we elucidate
how the design of HermNet is compatible with quantum mechanics from the
perspective of the density functional theory. Besides, HermNet is a universal
framework, whose sub-networks could be replaced by other advanced models.
Related papers
- Bond Graphs for multi-physics informed Neural Networks for multi-variate time series [6.775534755081169]
Existing methods are not adapted to tasks with complex multi-physical and multi-domain phenomena.
We propose a Neural Bond graph (NBgE) producing multi-physics-informed representations that can be fed into any task-specific model.
arXiv Detail & Related papers (2024-05-22T12:30:25Z) - MAgNET: A Graph U-Net Architecture for Mesh-Based Simulations [0.5185522256407782]
We present MAgNET, which extends the well-known convolutional neural networks to accommodate arbitrary graph-structured data.
We demonstrate the predictive capabilities of MAgNET in surrogate modeling for non-linear finite element simulations in the mechanics of solids.
arXiv Detail & Related papers (2022-11-01T19:23:45Z) - ViSNet: an equivariant geometry-enhanced graph neural network with
vector-scalar interactive message passing for molecules [69.05950120497221]
We propose an equivariant geometry-enhanced graph neural network called ViSNet, which elegantly extracts geometric features and efficiently models molecular structures.
Our proposed ViSNet outperforms state-of-the-art approaches on multiple MD benchmarks, including MD17, revised MD17 and MD22, and achieves excellent chemical property prediction on QM9 and Molecule3D datasets.
arXiv Detail & Related papers (2022-10-29T07:12:46Z) - Dynamic Graph Message Passing Networks for Visual Recognition [112.49513303433606]
Modelling long-range dependencies is critical for scene understanding tasks in computer vision.
A fully-connected graph is beneficial for such modelling, but its computational overhead is prohibitive.
We propose a dynamic graph message passing network, that significantly reduces the computational complexity.
arXiv Detail & Related papers (2022-09-20T14:41:37Z) - Simple and Efficient Heterogeneous Graph Neural Network [55.56564522532328]
Heterogeneous graph neural networks (HGNNs) have powerful capability to embed rich structural and semantic information of a heterogeneous graph into node representations.
Existing HGNNs inherit many mechanisms from graph neural networks (GNNs) over homogeneous graphs, especially the attention mechanism and the multi-layer structure.
This paper conducts an in-depth and detailed study of these mechanisms and proposes Simple and Efficient Heterogeneous Graph Neural Network (SeHGNN)
arXiv Detail & Related papers (2022-07-06T10:01:46Z) - GemNet: Universal Directional Graph Neural Networks for Molecules [7.484063729015126]
We show that GNNs with directed edge embeddings and two-hop message passing are indeed universal approximators for predictions.
We then leverage these insights and multiple structural improvements to propose the geometric message passing neural network (GemNet)
arXiv Detail & Related papers (2021-06-02T15:44:55Z) - Molecular Mechanics-Driven Graph Neural Network with Multiplex Graph for
Molecular Structures [20.276492931562036]
A growing number of Graph Neural Networks (GNNs) have been proposed to address this challenge.
In this work, we aim to design a GNN which is both powerful and efficient for molecule structures.
We build Multiplex Molecular Graph Neural Network (MXMNet)
arXiv Detail & Related papers (2020-11-15T05:55:15Z) - A Multi-Semantic Metapath Model for Large Scale Heterogeneous Network
Representation Learning [52.83948119677194]
We propose a multi-semantic metapath (MSM) model for large scale heterogeneous representation learning.
Specifically, we generate multi-semantic metapath-based random walks to construct the heterogeneous neighborhood to handle the unbalanced distributions.
We conduct systematical evaluations for the proposed framework on two challenging datasets: Amazon and Alibaba.
arXiv Detail & Related papers (2020-07-19T22:50:20Z) - Multi-View Graph Neural Networks for Molecular Property Prediction [67.54644592806876]
We present Multi-View Graph Neural Network (MV-GNN), a multi-view message passing architecture.
In MV-GNN, we introduce a shared self-attentive readout component and disagreement loss to stabilize the training process.
We further boost the expressive power of MV-GNN by proposing a cross-dependent message passing scheme.
arXiv Detail & Related papers (2020-05-17T04:46:07Z) - Learning to Simulate Complex Physics with Graph Networks [68.43901833812448]
We present a machine learning framework and model implementation that can learn to simulate a wide variety of challenging physical domains.
Our framework---which we term "Graph Network-based Simulators" (GNS)--represents the state of a physical system with particles, expressed as nodes in a graph, and computes dynamics via learned message-passing.
Our results show that our model can generalize from single-timestep predictions with thousands of particles during training, to different initial conditions, thousands of timesteps, and at least an order of magnitude more particles at test time.
arXiv Detail & Related papers (2020-02-21T16:44:28Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.