Multi-Level Fusion Graph Neural Network for Molecule Property Prediction
- URL: http://arxiv.org/abs/2507.03430v1
- Date: Fri, 04 Jul 2025 09:38:19 GMT
- Title: Multi-Level Fusion Graph Neural Network for Molecule Property Prediction
- Authors: XiaYu Liu, Hou-biao Li, Yang Liu, Chao Fan,
- Abstract summary: We propose a Multi-Level Fusion Graph Neural Network (MLFGNN) that integrates Graph Attention Networks and a novel Graph Transformer.<n>Experiments on multiple benchmark datasets demonstrate that MLFGNN consistently outperforms state-of-the-art methods in both classification and regression tasks.
- Score: 7.496721948662087
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Accurate molecular property prediction is essential in drug discovery and related fields. However, existing graph neural networks (GNNs) often struggle to simultaneously capture both local and global molecular structures. In this work, we propose a Multi-Level Fusion Graph Neural Network (MLFGNN) that integrates Graph Attention Networks and a novel Graph Transformer to jointly model local and global dependencies. In addition, we incorporate molecular fingerprints as a complementary modality and introduce a mechanism of interaction between attention to adaptively fuse information across representations. Extensive experiments on multiple benchmark datasets demonstrate that MLFGNN consistently outperforms state-of-the-art methods in both classification and regression tasks. Interpretability analysis further reveals that the model effectively captures task-relevant chemical patterns, supporting the usefulness of multi-level and multi-modal fusion in molecular representation learning.
Related papers
- Molecular Graph Representation Learning via Structural Similarity Information [11.38130169319915]
We introduce the textbf Structural Similarity Motif GNN (MSSM-GNN), a novel molecular graph representation learning method.
In particular, we propose a specially designed graph that leverages graph kernel algorithms to represent the similarity between molecules quantitatively.
We employ GNNs to learn feature representations from molecular graphs, aiming to enhance the accuracy of property prediction by incorporating additional molecular representation information.
arXiv Detail & Related papers (2024-09-13T06:59:10Z) - Bi-level Contrastive Learning for Knowledge-Enhanced Molecule Representations [68.32093648671496]
We introduce GODE, which accounts for the dual-level structure inherent in molecules.<n> Molecules possess an intrinsic graph structure and simultaneously function as nodes within a broader molecular knowledge graph.<n>By pre-training two GNNs on different graph structures, GODE effectively fuses molecular structures with their corresponding knowledge graph substructures.
arXiv Detail & Related papers (2023-06-02T15:49:45Z) - Molecular Joint Representation Learning via Multi-modal Information [11.493011069441188]
We propose a novel framework of molecular joint representation learning via Multi-Modal information of SMILES and molecular Graphs, called MMSG.
We improve the self-attention mechanism by introducing bond level graph representation as attention bias in Transformer.
We further propose a Bidirectional Message Communication Graph Neural Network (BMC GNN) to strengthen the information flow aggregated from graphs for further combination.
arXiv Detail & Related papers (2022-11-25T11:53:23Z) - HiGNN: Hierarchical Informative Graph Neural Networks for Molecular
Property Prediction Equipped with Feature-Wise Attention [5.735627221409312]
We propose a well-designed hierarchical informative graph neural networks framework (termed HiGNN) for predicting molecular property.
Experiments demonstrate that HiGNN achieves state-of-the-art predictive performance on many challenging drug discovery-associated benchmark datasets.
arXiv Detail & Related papers (2022-08-30T05:16:15Z) - Graph neural networks for the prediction of molecular structure-property
relationships [59.11160990637615]
Graph neural networks (GNNs) are a novel machine learning method that directly work on the molecular graph.
GNNs allow to learn properties in an end-to-end fashion, thereby avoiding the need for informative descriptors.
We describe the fundamentals of GNNs and demonstrate the application of GNNs via two examples for molecular property prediction.
arXiv Detail & Related papers (2022-07-25T11:30:44Z) - Simple and Efficient Heterogeneous Graph Neural Network [55.56564522532328]
Heterogeneous graph neural networks (HGNNs) have powerful capability to embed rich structural and semantic information of a heterogeneous graph into node representations.
Existing HGNNs inherit many mechanisms from graph neural networks (GNNs) over homogeneous graphs, especially the attention mechanism and the multi-layer structure.
This paper conducts an in-depth and detailed study of these mechanisms and proposes Simple and Efficient Heterogeneous Graph Neural Network (SeHGNN)
arXiv Detail & Related papers (2022-07-06T10:01:46Z) - Few-Shot Graph Learning for Molecular Property Prediction [46.60746023179724]
We propose Meta-MGNN, a novel model for few-shot molecular property prediction.
To exploit unlabeled molecular information, Meta-MGNN further incorporates molecular structure, attribute based self-supervised modules and self-attentive task weights.
Extensive experiments on two public multi-property datasets demonstrate that Meta-MGNN outperforms a variety of state-of-the-art methods.
arXiv Detail & Related papers (2021-02-16T01:55:34Z) - Distance-aware Molecule Graph Attention Network for Drug-Target Binding
Affinity Prediction [54.93890176891602]
We propose a diStance-aware Molecule graph Attention Network (S-MAN) tailored to drug-target binding affinity prediction.
As a dedicated solution, we first propose a position encoding mechanism to integrate the topological structure and spatial position information into the constructed pocket-ligand graph.
We also propose a novel edge-node hierarchical attentive aggregation structure which has edge-level aggregation and node-level aggregation.
arXiv Detail & Related papers (2020-12-17T17:44:01Z) - Multi-View Graph Neural Networks for Molecular Property Prediction [67.54644592806876]
We present Multi-View Graph Neural Network (MV-GNN), a multi-view message passing architecture.
In MV-GNN, we introduce a shared self-attentive readout component and disagreement loss to stabilize the training process.
We further boost the expressive power of MV-GNN by proposing a cross-dependent message passing scheme.
arXiv Detail & Related papers (2020-05-17T04:46:07Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.