論文の概要: Unsupervised Learning for Target Tracking and Background Subtraction in
Satellite Imagery
- arxiv url: http://arxiv.org/abs/2109.00885v1
- Date: Fri, 13 Aug 2021 16:36:23 GMT
- ステータス: 処理完了
- システム内更新日: 2021-09-05 13:05:02.794569
- Title: Unsupervised Learning for Target Tracking and Background Subtraction in
Satellite Imagery
- Title(参考訳): 衛星画像における目標追跡と背景抽出の教師なし学習
- Authors: Jonathan S. Kent, Charles C. Wamsley, Davin Flateau, Amber Ferguson
- Abstract要約: 本稿では、ターゲット追跡とバックグラウンド抑圧が可能な教師なし機械学習手法について述べる。
モデルはクロス・エントロピー・ロスのカスタム改造版で訓練された。
シミュレーションデータを使用して、JekyllとHydeのパフォーマンスを、従来型の教師付き機械学習アプローチと比較した。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: This paper describes an unsupervised machine learning methodology capable of
target tracking and background suppression via a novel dual-model approach.
``Jekyll`` produces a video bit-mask describing an estimate of the locations of
moving objects, and ``Hyde`` outputs a pseudo-background frame to subtract from
the original input image sequence. These models were trained with a
custom-modified version of Cross Entropy Loss.
Simulated data were used to compare the performance of Jekyll and Hyde
against a more traditional supervised Machine Learning approach. The results
from these comparisons show that the unsupervised methods developed are
competitive in output quality with supervised techniques, without the
associated cost of acquiring labeled training data.
- Abstract(参考訳): 本稿では,新しいデュアルモデルアプローチによる追跡と背景抑圧が可能な教師なし機械学習手法について述べる。
``jekyll`` は動く物体の位置を推定するビデオビットマスクを生成し、 ``hyde`` は擬似バックグランドフレームを出力して元の入力画像列から減算する。
これらのモデルは、クロスエントロピー損失のカスタマイズされたバージョンで訓練された。
シミュレーションデータを使用して、JekyllとHydeのパフォーマンスを、従来型の教師付き機械学習アプローチと比較した。
これらの結果から, 教師なし手法は, ラベル付きトレーニングデータを取得するコストを伴わずに, 教師付き手法と出力品質の競争力を有することがわかった。
関連論文リスト
- TrajSSL: Trajectory-Enhanced Semi-Supervised 3D Object Detection [59.498894868956306]
Pseudo-labeling approach to semi-supervised learning は教師-学生の枠組みを採用する。
我々は、事前学習した動き予測モデルを活用し、擬似ラベル付きデータに基づいて物体軌跡を生成する。
提案手法は2つの異なる方法で擬似ラベル品質を向上する。
論文 参考訳(メタデータ) (2024-09-17T05:35:00Z) - Self-Supervised Dual Contouring [30.9409064656302]
本稿ではニューラルデュアルコンチューリングメッシュフレームワークのための自己教師型トレーニングスキームを提案する。
生成メッシュ間の距離の整合性を促進する2つの新しい自己教師付き損失関数を用いる。
単視点再構成作業における自己監督的損失によりメッシュ性能が向上することが実証された。
論文 参考訳(メタデータ) (2024-05-28T12:44:28Z) - Transformer-based Clipped Contrastive Quantization Learning for
Unsupervised Image Retrieval [15.982022297570108]
教師なし画像検索は、与えられたクエリ画像の類似画像を取得するために、任意のレベルなしに重要な視覚的特徴を学習することを目的としている。
本稿では,パッチベースの処理により局所的なコンテキストを持つTransformerを用いて,画像のグローバルコンテキストを符号化するTransClippedCLRモデルを提案する。
提案したクリップ付きコントラスト学習の結果は、バニラコントラスト学習と同一のバックボーンネットワークと比較して、すべてのデータセットで大幅に改善されている。
論文 参考訳(メタデータ) (2024-01-27T09:39:11Z) - Refining Pre-Trained Motion Models [56.18044168821188]
我々は、自己教師付きトレーニングによる最先端の教師付きモデルの改善に挑戦する。
実世界の未学習ビデオから「クリーン」な訓練信号を得ることに重点を置いている。
本研究では,本手法が実動画における完全教師付き手法よりも信頼性が高いことを示す。
論文 参考訳(メタデータ) (2024-01-01T18:59:33Z) - Weakly-supervised 3D Pose Transfer with Keypoints [57.66991032263699]
3Dポーズ転送の主な課題は、1) 異なる文字で同じポーズを行うペアトレーニングデータの欠如、2) ターゲットメッシュからポーズと形状情報を分離すること、3) 異なるトポロジを持つメッシュに適用することの難しさである。
本稿では,これらの課題を克服するためのキーポイントベースのフレームワークを提案する。
論文 参考訳(メタデータ) (2023-07-25T12:40:24Z) - Learning to Mask and Permute Visual Tokens for Vision Transformer
Pre-Training [59.923672191632065]
我々はMasked and Permuted Vision Transformer(MaPeT)という自己教師型事前学習手法を提案する。
MaPeTは、自動回帰および置換予測を使用して、パッチ内依存関係をキャプチャする。
以上の結果から,MaPeTはImageNet上での競合性能を実証した。
論文 参考訳(メタデータ) (2023-06-12T18:12:19Z) - Online Deep Clustering with Video Track Consistency [85.8868194550978]
ビデオオブジェクトトラックから視覚的特徴を学習するための教師なしクラスタリングに基づく手法を提案する。
教師なしのクラス非依存でノイズの多いトラックジェネレータを利用すれば、コストと正確なトラックアノテーションに依存するよりも精度が向上することを示す。
論文 参考訳(メタデータ) (2022-06-07T08:11:00Z) - Dual Contrastive Learning for Unsupervised Image-to-Image Translation [16.759958400617947]
unsupervised image-to-image translationタスクは、非ペアトレーニングデータからソースドメインxとターゲットドメインyとのマッピングを見つけることを目的としている。
画像対画像翻訳におけるコントラスト学習は最先端の成果をもたらす。
本論文では, 対比学習に基づく新しい手法と, 対比データ間の効率的なマッピングを推定するデュアルラーニング設定を提案する。
論文 参考訳(メタデータ) (2021-04-15T18:00:22Z) - Weakly Supervised Video Salient Object Detection [79.51227350937721]
本稿では,relabeled relabeled "fixation guided scribble annotations" に基づく最初の弱教師付きビデオサリエント物体検出モデルを提案する。
効果的なマルチモーダル学習と長期時間文脈モデリングを実現するために,「アプレンス・モーション・フュージョン・モジュール」と双方向のConvLSTMベースのフレームワークを提案する。
論文 参考訳(メタデータ) (2021-04-06T09:48:38Z) - Self-Supervised Contrastive Learning for Unsupervised Phoneme
Segmentation [37.054709598792165]
このモデルは畳み込みニューラルネットワークであり、生波形上で直接動作する。
ノイズコントラスト推定原理を用いて信号のスペクトル変化を同定する。
テスト時には、モデル出力にピーク検出アルゴリズムを適用して最終境界を生成する。
論文 参考訳(メタデータ) (2020-07-27T12:10:21Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。